Wendy L Devereux

Johns Hopkins University, Baltimore, Maryland, United States

Are you Wendy L Devereux?

Claim your profile

Publications (5)62.41 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.
    Nature medicine 10/2011; 17(11):1504-8. DOI:10.1038/nm.2473 · 28.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small-cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then reimplanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared with normal lung, primary tumors, xenografts, and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture and that was not regained when the tumors were reestablished as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development.
    Cancer Research 05/2009; 69(8):3364-73. DOI:10.1158/0008-5472.CAN-08-4210 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma is an embryonal tumor thought to arise from the granule cell precursors (GCPs) of the cerebellum. PATCHED (PTCH), an inhibitor of Hedgehog signaling, is the best-characterized tumor suppressor in medulloblastoma. However, <20% of medulloblastomas have mutations in PTCH. In the search for other tumor suppressors, interest has focused on the deletion events at the 17p13.3 locus, the most common genetic defect in medulloblastoma. This chromosomal region contains HYPERMETHYLATED IN CANCER 1 (HIC1), a transcriptional repressor that is a frequent target of epigenetic gene silencing in medulloblastoma. Here we use a mouse model of Ptch1 heterozygosity to reveal a critical tumor suppressor function for Hic1 in medulloblastoma. When compared with Ptch1 heterozygous mutants, compound Ptch1/Hic1 heterozygotes display a fourfold increased incidence of medulloblastoma. We show that Hic1 is a direct transcriptional repressor of Atonal Homolog 1 (Atoh1), a proneural transcription factor essential for cerebellar development, and show that ATOH1 expression is required for human medulloblastoma cell growth in vitro. Given that Atoh1 is also a putative target of Hh signaling, we conclude that the Hic1 and Ptch1 tumor suppressors cooperate to silence Atoh1 expression during a critical phase in GCP differentiation in which malignant transformation may lead to medulloblastoma.
    Genes & Development 03/2008; 22(6):770-85. DOI:10.1101/gad.1640908 · 12.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transgenic enhanced green fluorescent protein (EGFP) expressing 'green' mouse (C57BL/6-TgN(ACTbEGFP)1Osb) is a widely used tool in stem cell research, where the ubiquitous nature of EGFP expression is critical to track the fate of single or small groups of transplanted haematopoietic stem cells (HSC). Our aim was to investigate this assumed ubiquitous expression by performing a detailed histological survey of EGFP expression in these mice. Fluorescent microscopy of frozen tissue sections was used to perform a detailed histological survey of the pattern of EGFP expression in these mice. Flow cytometry was also used to determine the expression pattern in blood and bone marrow. Three patterns of EGFP expression were noted. In most tissues there was an apparently stochastic variegation of the transgene, with individual cell types demonstrating highly variable rates of EGFP expression. Certain specific cell types such as pancreatic ductal epithelium, cerebral cortical neurones and glial cells and glomerular mesangial cells consistently lacked EGFP expression, while others, including pancreatic islet cells, expressed EGFP only at extremely low levels, barely distinguishable from background. Lastly, in the colon and stomach the pattern of EGFP expression was suggestive of clonal inactivation. Only cardiac and skeletal muscle showed near ubiquitous expression. These findings raise questions regarding the 'ubiquitous' expression of EGFP in these transgenic mice and suggest caution in relying overly on EGFP alone as an infallible marker of donor cell origin.
    Pathology 05/2007; 39(2):247-51. DOI:10.1080/00313020701230807 · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cancer stem cell hypothesis suggests that malignant growth depends on a subset of tumor cells with stem cell-like properties of self-renewal. Because hedgehog (Hh) signaling regulates progenitor cell fate in normal development and homeostasis, aberrant pathway activation might be involved in the maintenance of such a population in cancer. Indeed, mutational activation of the Hh pathway is associated with medulloblastoma and basal cell carcinoma; pathway activity is also critical for growth of other tumors lacking such mutations, although the mechanism of pathway activation is poorly understood. Here we study the role and mechanism of Hh pathway activation in multiple myeloma (MM), a malignancy with a well defined stem cell compartment. In this model, rare malignant progenitors capable of clonal expansion resemble B cells, whereas the much larger tumor cell population manifests a differentiated plasma cell phenotype that pathologically defines the disease. We show that the subset of MM cells that manifests Hh pathway activity is markedly concentrated within the tumor stem cell compartment. The Hh ligand promotes expansion of MM stem cells without differentiation, whereas the Hh pathway blockade, while having little or no effect on malignant plasma cell growth, markedly inhibits clonal expansion accompanied by terminal differentiation of purified MM stem cells. These data reveal that Hh pathway activation is heterogeneous across the spectrum of MM tumor stem cells and their more differentiated progeny. The potential existence of similar relationships in other adult cancers may have important biologic and clinical implications for the study of aberrant Hh signaling.
    Proceedings of the National Academy of Sciences 04/2007; 104(10):4048-53. DOI:10.1073/pnas.0611682104 · 9.81 Impact Factor