J D Karkera

National Human Genome Research Institute, Maryland, United States

Are you J D Karkera?

Claim your profile

Publications (7)55.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-Deficit/Hyperactivity Disorder (ADHD) has a very high heritability (0.8), suggesting that about 80% of phenotypic variance is due to genetic factors. We used the integration of statistical and functional approaches to discover a novel gene that contributes to ADHD. For our statistical approach, we started with a linkage study based on large multigenerational families in a population isolate, followed by fine mapping of targeted regions using a family-based design. Family- and population-based association studies in five samples from disparate regions of the world were used for replication. Brain imaging studies were performed to evaluate gene function. The linkage study discovered a genome region harbored in the Latrophilin 3 gene (LPHN3). In the world-wide samples (total n=6360, with 2627 ADHD cases and 2531 controls) statistical association of LPHN3 and ADHD was confirmed. Functional studies revealed that LPHN3 variants are expressed in key brain regions related to attention and activity, affect metabolism in neural circuits implicated in ADHD, and are associated with response to stimulant medication. Linkage and replicated association of ADHD with a novel non-candidate gene (LPHN3) provide new insights into the genetics, neurobiology, and treatment of ADHD.Keywords: ADHD; complex trait; gene; LPHN3; genetics; latrophilin
    Molecular Psychiatry 02/2010; 15(11):1053-1066. · 14.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cyclopic and laterality phenotypes in model organisms linked to disturbances in the generation or propagation of Nodal-like signals are potential examples of similar impairments resulting in birth defects in humans. However, the types of gene mutation(s) and their pathogenetic combinations in humans are poorly understood. Here we describe a mutational analysis of the human NODAL gene in a large panel of patients with phenotypes compatible with diminished NODAL ligand function. Significant reductions in the biological activity of NODAL alleles are detected among patients with congenital heart defects (CHD), laterality anomalies (e.g. left-right mis-specification phenotypes), and only rarely holoprosencephaly (HPE). While many of these NODAL variants are typical for family-specific mutations, we also report the presence of alleles with significantly reduced activity among common population variants. We propose that some of these common variants act as modifiers and contribute to the ultimate phenotypic outcome in these patients; furthermore, we draw parallels with strain-specific modifiers in model organisms to bolster this interpretation.
    Molecular Genetics and Metabolism 06/2009; 98(1-2):225-34. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities of embryonic patterning are hypothesized to underlie many common congenital malformations in humans including congenital heart defects (CHDs), left-right disturbances (L-R) or laterality, and holoprosencephaly (HPE). Studies in model organisms suggest that Nodal-like factors provide instructions for key aspects of body axis and germ layer patterning; however, the complex genetics of pathogenic gene variant(s) in humans are poorly understood. Here we report our studies of FOXH1, CFC1, and SMAD2 and summarize our mutational analysis of three additional components in the human NODAL-signaling pathway: NODAL, GDF1, and TDGF1. We identify functionally abnormal gene products throughout the pathway that are clearly associated with CHD, laterality, and HPE. Abnormal gene products are most commonly detected in patients within a narrow spectrum of isolated conotruncal heart defects (minimum 5%-10% of subjects), and far less commonly in isolated laterality or HPE patients (approximately 1% for each). The difference in the mutation incidence between these groups is highly significant. We show that apparent gene dosage discrepancies between humans and model organisms can be reconciled by considering a broader combination of sequence variants. Our studies confirm that (1) the genetic vulnerabilities inferred from model organisms with defects in Nodal signaling are indeed analogous to humans; (2) the molecular analysis of an entire signaling pathway is more complete and robust than that of individual genes and presages future studies by whole-genome analysis; and (3) a functional genomics approach is essential to fully appreciate the complex genetic interactions necessary to produce these effects in humans.
    The American Journal of Human Genetics 08/2008; 83(1):18-29. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart defects (CHDs) are among the most common birth defects in humans (incidence 8-10 per 1,000 live births). Although their etiology is often poorly understood, most are considered to arise from multifactorial influences, including environmental and genetic components, as well as from less common syndromic forms. We hypothesized that disturbances in left-right patterning could contribute to the pathogenesis of selected cardiac defects by interfering with the extrinsic cues leading to the proper looping and vessel remodeling of the normally asymmetrically developed heart and vessels. Here, we show that heterozygous loss-of-function mutations in the human GDF1 gene contribute to cardiac defects ranging from tetralogy of Fallot to transposition of the great arteries and that decreased TGF- beta signaling provides a framework for understanding their pathogenesis. These findings implicate perturbations of the TGF- beta signaling pathway in the causation of a major subclass of human CHDs.
    The American Journal of Human Genetics 12/2007; 81(5):987-94. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ocular (uveoretinal) colobomas occur in one in 10,000 individuals and present a substantive cause of congenital poor vision. The genetic bases of most forms of uveoretinal coloboma are elusive; mutations in PAX2 are found in only a few cases of coloboma of the retina and optic nerve that occur with renal anomalies as part of the renal-coloboma syndrome (MIM#120330; #167409). From experimental data that upstream expression of sonic hedgehog (SHH) controls Pax2 expression in mice and zebrafish, and from clinical experience that colobomas are observed frequently in patients with holoprosencephaly, we hypothesized that SHH could be a candidate for non-syndromic ocular colobomas (NSOC). We identified a three-generation family in which both a proband and his mother presented with iris and uveoretinal colobomas without optic nerve involvement. A novel 24 bp deletion in the gene SHH was identified in these affected family members, and cosegregated with the phenotype. This is the first report of the association of SHH mutations and uveoretinal coloboma.
    American Journal of Medical Genetics Part A 02/2003; 116A(3):215-21. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent investigations identified heterozygous CFC1 mutations in subjects with heterotaxy syndrome, all of whom had congenital cardiac malformations, including malposition of the great arteries. We hypothesized that a subset of patients with similar types of congenital heart disease---namely, transposition of the great arteries and double-outlet right ventricle, in the absence of laterality defects---would also have CFC1 mutations. Our analysis of the CFC1 gene in patients with these cardiac disorders identified two disease-related mutations in 86 patients. The present study identifies the first autosomal single-gene defect for these cardiac malformations and indicates that some cases of transposition of the great arteries and double-outlet right ventricle can share a common genetic etiology with heterotaxy syndrome. In addition, these results demonstrate that the molecular pathway involving CFC1 plays a critical role in normal and abnormal cardiovascular development.
    The American Journal of Human Genetics 04/2002; 70(3):776-80. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Holoprosencephaly (HPE) is the most common congenital malformation of the brain and face in humans. In this study we report the analysis of SIL (Sumacr;CL iumacr;nterrupting lumacr;ocus) as a candidate gene for HPE. Fluorescent in situ hybridization (FISH) analysis using a BAC 246e16 confirmed the assignment of SIL to 1p32. Computational analysis of SIL at the protein level revealed a 73% overall identity between the human and murine proteins. Denaturing high performance liquid chromatography (dHPLC) techniques were used to screen for mutations and these studies identified several common polymorphisms but no disease-associated mutations, suggesting that SIL is not a common factor in HPE pathogenesis in humans.
    Cytogenetic and Genome Research 02/2002; 97(1-2):62-7. · 1.84 Impact Factor