Moses V Chao

CUNY Graduate Center, New York, New York, United States

Are you Moses V Chao?

Claim your profile

Publications (241)1990.05 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance statement: The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including apoptosis, neuronal processes remodeling, and synaptic plasticity. The goal of our work was to inquire whether oligomers of the receptor are required for function. Here we report that p75(NTR) predominantly assembles as a trimer, similar to other tumor necrosis factor receptors. Interestingly, monomers and trimers coexist at the cell surface, but trimers are not required for p75(NTR) activation in a functional assay. However, monomers are capable of inducing acute morphological effects in neurons. Identification of the oligomerization state of p75(NTR) begins to provide insights to the mechanisms of signal initiation of this noncatalytic receptor, as well as to develop therapeutic interventions to diminish its activity.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 08/2015; 35(34):11911-11920. DOI:10.1523/JNEUROSCI.0591-15.2015 · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
    Schizophrenia Research 07/2015; DOI:10.1016/j.schres.2015.07.002 · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimulus-triggered protein synthesis is critical for brain health and function. However, due to technical hurdles, de novo neuronal translation is predominantly studied in cultured cells, whereas electrophysiological and circuit analyses often are performed in brain slices. The different properties of these two experimental systems create an information gap about stimulus-induced alterations in the expression of new proteins in mature circuits. To address this, we adapted two existing techniques, BONCAT and SILAC, to a combined proteomic technique, BONLAC, for use in acute adult hippocampal slices. Using BDNF-induced protein synthesis as a proof of concept, we found alterations in expression of proteins involved in neurotransmission, trafficking, and cation binding that differed from those found in a similar screen in cultured neurons. Our results indicate important differences between cultured neurons and slices, and suggest that BONLAC could be used to dissect proteomic changes underlying synaptic events in adult circuits. Copyright © 2015. Published by Elsevier Ltd.
    Neuropharmacology 07/2015; DOI:10.1016/j.neuropharm.2015.07.017 · 5.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a debilitating syndrome with high heritability. Genomic studies reveal more than a hundred genetic variants, largely nonspecific and of small effect size, and not accounting for its high heritability. De novo mutations are one mechanism whereby disease related alleles may be introduced into the population, although these have not been leveraged to explore the disease in general samples. This paper describes a framework to find high impact genes for schizophrenia. This study consists of two different datasets. First, whole exome sequencing was conducted to identify disruptive de novo mutations in 14 complete parent-offspring trios with sporadic schizophrenia from Jerusalem, which identified 5 sporadic cases with de novo gene mutations in 5 different genes (PTPRG, TGM5, SLC39A13, BTK, CDKN3). Next, targeted exome capture of these genes was conducted in 48 well-characterized, unrelated, ethnically diverse schizophrenia cases, recruited and characterized by the same research team in New York (NY sample), which demonstrated extremely rare and potentially damaging variants in three of the five genes (MAF<0.01) in 12/48 cases (25%); including PTPRG (5 cases), SCL39A13 (4 cases) and TGM5 (4 cases), a higher number than usually identified by whole exome sequencing. Cases differed in cognition and illness features based on which mutation-enriched gene they carried. Functional de novo mutations in protein-interaction domains in sporadic schizophrenia can illuminate risk genes that increase the propensity to develop schizophrenia across ethnicities. Copyright © 2015. Published by Elsevier B.V.
    Schizophrenia Research 06/2015; 166(1-3). DOI:10.1016/j.schres.2015.05.042 · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies in humans and in genetic mouse models have identified Slit- and NTRK-like family (Slitrks) as candidate genes for neuropsychiatric disorders. All Slitrk isotypes are highly expressed in the CNS, where they mediate neurite outgrowth, synaptogenesis, and neuronal survival. However, the molecular mechanisms underlying these functions are not known. Here, we report that Slitrk5 modulates brain-derived neurotrophic factor (BDNF)-dependent biological responses through direct interaction with TrkB receptors. Under basal conditions, Slitrk5 interacts primarily with a transsynaptic binding partner, protein tyrosine phosphatase δ (PTPδ); however, upon BDNF stimulation, Slitrk5 shifts to cis-interactions with TrkB. In the absence of Slitrk5, TrkB has a reduced rate of ligand-dependent recycling and altered responsiveness to BDNF treatment. Structured illumination microscopy revealed that Slitrk5 mediates optimal targeting of TrkB receptors to Rab11-positive recycling endosomes through recruitment of a Rab11 effector protein, Rab11-FIP3. Thus, Slitrk5 acts as a TrkB co-receptor that mediates its BDNF-dependent trafficking and signaling. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 05/2015; 33(6). DOI:10.1016/j.devcel.2015.04.009 · 9.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurotrophins play a crucial role in mediating neuronal survival and synaptic plasticity. A lack of trophic factor support in the peripheral nervous system (PNS) is associated with a transcription-dependent programmed cell death process in developing sympathetic neurons. While most of the attention has been upon events culminating in cell death in the PNS, the earliest events that occur after trophic factor withdrawal in the central nervous system (CNS) have not been investigated. In the CNS, brain-derived neurotrophic factor (BDNF) is widely expressed and is released in an activity-dependent manner to shape the structure and function of neuronal populations. Reduced neurotrophic factor support has been proposed as a mechanism to account for changes in synaptic plasticity during neurodevelopment to aging and neurodegenerative disorders. To this end, we performed transcriptional profiling in cultured rat hippocampal neurons. We used a TrkB ligand scavenger (TrkB-FC) to sequester endogenous neurotrophic factor activity from hippocampal neurons in culture. Using a high-density microarray platform, we identified a significant decrease in genes that are associated with vesicular trafficking and synaptic function, as well as selective increases in MAP kinase phosphatases. A comparison of these changes with recent studies of Alzheimer's disease and cognitive impairment in post mortem brain tissue revealed striking similarities in gene expression changes for genes involved in synaptic function. These changes are relevant to a wide number of conditions in which levels of BDNF are compromised. © 2014 Wiley Periodicals, Inc. Develop Neurobiol, 2014
    Developmental Neurobiology 02/2015; 75(2). DOI:10.1002/dneu.22216 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.
    PLoS ONE 12/2014; 9(12):e116114. DOI:10.1371/journal.pone.0116114 · 3.23 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Measuring the synthesis of new proteins in the context of a much greater number of pre-existing proteins can be difficult. To overcome this obstacle, bioorthogonal noncanonical amino acid tagging (BONCAT) can be combined with stable isotope labeling by amino acid in cell culture (SILAC) for comparative proteomic analysis of de novo protein synthesis (BONLAC). In the present study, we show that alkyne resin-based isolation of L-azidohomoalanine (AHA) labeled proteins using azide/alkyne cycloaddition minimizes contamination from pre-existing proteins. Using this approach, we isolated and identified 7414 BONCAT-labeled proteins. The nascent proteome isolated by BONCAT was very similar to the steady-state proteome, though transcription factors were highly enriched by BONCAT. About 30% of the methionine residues were replaced by AHA in our BONCAT samples, which allowed for identification of methionine-containing peptides. There was no bias against low methionine proteins by BONCAT at the proteome level. When we applied the BONLAC approach to screen for brain-derived neurotrophic factor (BDNF)-induced protein synthesis, 53 proteins were found to be significantly up-regulated two hours after BDNF stimulation. Our study demonstrated that the newly synthesized proteome, even after a short period of stimulation, can be efficiently isolated by BONCAT and analyzed to a depth that is similar to that of the steady-state proteome.
    Journal of Proteome Research 10/2014; 13(12). DOI:10.1021/pr5006982 · 4.25 Impact Factor
  • Katrin Deinhardt · Moses V Chao
    [Show abstract] [Hide abstract]
    ABSTRACT: The tropomyosin-related tyrosine kinase (Trk) receptors were initially described as a family of growth factor receptors required for neuronal survival. They have since been shown to influence many aspects of neuronal development and function, including differentiation, outgrowth, and synaptic plasticity. This chapter will give an overview on the biology of Trk receptors within the nervous system. The structure and downstream signaling pathways of the full-length receptors will be described, as well as the biological functions of their truncated isoforms. Finally, the role of Trk receptors in the nervous system in health and disease will be discussed.
    Handbook of experimental pharmacology 03/2014; 220:103-19. DOI:10.1007/978-3-642-45106-5_5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. We showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D2R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D2R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP). Proteomic mass spectrometry revealed marked changes in the pattern of protein synthesis after acute exposure of cultured striatal neurons to haloperidol, including increased abundance of cytoskeletal proteins and proteins associated with translation machinery. These proteomic changes coincided with increased morphological complexity of neurons that was diminished by inhibition of downstream effectors of mTORC1, suggesting that mTORC1-dependent translation enhances neuronal complexity in response to haloperidol. In vivo, we observed rapid morphological changes with a concomitant increase in the abundance of cytoskeletal proteins in cortical neurons of haloperidol-injected mice. These results suggest a mechanism for both the acute and long-term actions of antipsychotics.
    Science Signaling 01/2014; 7(308):ra4. DOI:10.1126/scisignal.2004331 · 6.28 Impact Factor
  • Molecular and Cellular Biology 09/2013; 33(20):4138-4138. DOI:10.1128/MCB.01139-13 · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.
    Nature Communications 09/2013; 4:2490. DOI:10.1038/ncomms3490 · 11.47 Impact Factor
  • Source
    Helen E Scharfman · Moses V Chao
    [Show abstract] [Hide abstract]
    ABSTRACT: A major problem in the field of neurodegeneration is the basis of selective vulnerability of subsets of neurons to disease. In aging, Alzheimer's disease (AD), and other disorders such as temporal lobe epilepsy, the superficial layers of the entorhinal cortex (EC) are an area of selective vulnerability. In AD, it has been suggested that the degeneration of these neurons may play a role in causing the disease because it occurs at an early stage. Therefore, it is important to define the distinctive characteristics of the EC that make this region particularly vulnerable. It has been shown that neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical to the maintenance of the cortical neurons in the adult brain, and specifically the EC. Here we review the circuitry, distinctive functions, and neurotrophin-dependence of the EC that are relevant to its vulnerability. We also suggest that a protein that is critical to the actions of BDNF, the ARMS/Kidins220 scaffold protein, plays an important role in neurotrophic support of the EC.
    Cognitive neuroscience 08/2013; 4(3-4). DOI:10.1080/17588928.2013.826184 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal glucocorticoid and neurotrophin signaling have been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a non-phosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF and Dex regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism.
    Molecular and Cellular Biology 07/2013; 33(18). DOI:10.1128/MCB.00150-13 · 4.78 Impact Factor
  • Katrin Deinhardt · Moses V Chao
    [Show abstract] [Hide abstract]
    ABSTRACT: Both mature BDNF and its precursor, proBDNF, play a crucial role in shaping neurons and contributing to the structural basis for neuronal connectivity. They do so in a largely opposing manner, and through differential engagement with their receptors. In this review, we will summarise the evidence that BDNF modulates neural circuit formation in vivo both within the central and peripheral nervous systems, through the control of neuronal morphology. The underlying intracellular mechanisms that translate BDNF signalling into changes of neuronal cell shape will be described. In addition, the signalling pathways that act either locally at the site of BDNF action, or over long distances to influence gene transcription will be discussed. These mechanisms begin to explain the diversity of actions that BDNF carries out on neuronal morphology.
    Neuropharmacology 05/2013; 76. DOI:10.1016/j.neuropharm.2013.04.054 · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excessive glucocorticoid exposure during chronic stress causes synapse loss and learning impairment. Under normal physiological conditions, glucocorticoid activity oscillates in synchrony with the circadian rhythm. Whether and how endogenous glucocorticoid oscillations modulate synaptic plasticity and learning is unknown. Here we show that circadian glucocorticoid peaks promote postsynaptic dendritic spine formation in the mouse cortex after motor skill learning, whereas troughs are required for stabilizing newly formed spines that are important for long-term memory retention. Conversely, chronic and excessive exposure to glucocorticoids eliminates learning-associated new spines and disrupts previously acquired memories. Furthermore, we show that glucocorticoids promote rapid spine formation through a non-transcriptional mechanism by means of the LIM kinase-cofilin pathway and increase spine elimination through transcriptional mechanisms involving mineralocorticoid receptor activation. Together, these findings indicate that tightly regulated circadian glucocorticoid oscillations are important for learning-dependent synaptic formation and maintenance. They also delineate a new signaling mechanism underlying these effects.
    Nature Neuroscience 04/2013; 16(6). DOI:10.1038/nn.3387 · 16.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of neuronal networks in the neocortex depends on control mechanisms for mitosis and migration that allow newborn neurons to find their accurate position. Multiple mitogens, neurotrophic factors, guidance molecules and their corresponding receptors are involved in this process, but the mechanisms by which these signals are integrated are only poorly understood. We found that TrkB and TrkC, the receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are activated by epidermal growth factor receptor (EGFR) signaling rather than by BDNF or NT-3 in embryonic mouse cortical precursor cells. This transactivation event regulated migration of early neuronal cells to their final position in the developing cortex. Transactivation by EGF led to membrane translocation of TrkB, promoting its signaling responsiveness. Our results provide genetic evidence that TrkB and TrkC activation in early cortical neurons do not depend on BDNF and NT-3, but instead on transactivation by EGFR signaling.
    Nature Neuroscience 02/2013; 16(4). DOI:10.1038/nn.3333 · 16.10 Impact Factor
  • Moses V Chao · Pietro Calissano
    Neuron 02/2013; 77(3):385-7. DOI:10.1016/j.neuron.2013.01.019 · 15.05 Impact Factor
  • Society for Neuroscience Meeting, New Orleans; 10/2012

Publication Stats

23k Citations
1,990.05 Total Impact Points


  • 1998–2015
    • CUNY Graduate Center
      New York, New York, United States
  • 2005–2014
    • NYU Langone Medical Center
      • • Department of Psychiatry
      • • Department of Cell Biology
      New York, New York, United States
  • 2012
    • The Hong Kong University of Science and Technology
      • State Key Laboratory of Molecular Neuroscience
      Chiu-lung, Kowloon City, Hong Kong
  • 1986–2006
    • Cornell University
      • • Department of Medicine
      • • Department of Molecular Biology
      Итак, New York, United States
  • 2003–2005
    • New York University
      • Department of Cell Biology
      New York City, NY, United States
    • Akita University
      Akita, Akita, Japan
  • 2004
    • Harvard University
      Cambridge, Massachusetts, United States
    • Cancer Research UK
      Londinium, England, United Kingdom
  • 2001
    • Columbia University
      • Department of Pharmacology
      New York City, New York, United States
    • University of California, San Diego
      • Department of Cellular and Molecular Medicine (CMM)
      San Diego, California, United States
  • 1999
    • Memorial Sloan-Kettering Cancer Center
      New York, New York, United States
  • 1987–1999
    • Weill Cornell Medical College
      • • Department of Medicine
      • • Division of Neurobiology
      New York City, New York, United States
    • Duke University
      • Department of Medicine
      Durham, North Carolina, United States
  • 1995
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 1989
    • University of Washington Seattle
      Seattle, Washington, United States