Hang Nguyen

Emory University, Atlanta, GA, United States

Are you Hang Nguyen?

Claim your profile

Publications (4)24.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease.
    The Journal of Immunology 06/2011; 187(3):1496-505. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohn's disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase. C57BL/6 mice were administered with 3.5% of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon. As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treated level after DSS withdrawal. Finally, enhanced expression of proinflammatory mediators also revealed a different profile feature in proximal and distal parts of the colon. Experimental colitis induced by DSS is a good animal model to study the mechanisms underlying the pathogenesis and intervention against IBD, especially UC.
    PLoS ONE 02/2009; 4(6):e6073. · 3.73 Impact Factor
  • Gastroenterology 12/2008; 135(6):2149-50. · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular domain of the glycoprotein-associated integrin hCD98 protrudes into the basolateral extracellular space of the intestine and contains a PDZ class II-binding domain (GLLLRFPYAA, amino acids 520-529). Protein-protein interaction studies in vitro as well as in human colonic sections and Caco2-BBE cells have revealed that hCD98 coimmunoprecipitated with the basolateral membrane-associated guanylate kinase hCASK and that this interaction occurred in a PDZ domain-dependent manner. These novel results, which provide the first evidence for a PDZ domain-dependent interaction between a membrane protein and an extracellular protein, open a new field of investigation related to extracellular signaling in cell biology.
    Journal of Membrane Biology 02/2007; 215(1):15-26. · 2.48 Impact Factor