Sarah J Schrieber

University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Are you Sarah J Schrieber?

Claim your profile

Publications (5)26.52 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silymarin, derived from the milk thistle plant Silybum marianum and widely used for self-treatment of liver diseases, is composed of six major flavonolignans including silybin A and silybin B, which are the predominant flavonolignans quantified in human plasma. The single- and multiple-dose pharmacokinetics of silymarin flavonolignans were examined in patients with nonalcoholic fatty liver disease (NAFLD) or hepatitis C virus (HCV) to determine whether the disposition of silymarin and therefore its potential efficacy vary among liver disease populations. Cohorts of eight subjects with noncirrhotic liver disease were randomized 3:1 to oral silymarin or placebo (280 or 560 mg) every 8 h for 7 days. Forty-eight-hour blood sampling was conducted after the first and final doses. In general, plasma concentrations of silybin A and silybin B were higher, whereas concentrations of conjugates were lower in NAFLD compared with HCV. After adjustment of the area under plasma concentration-time curve from 0 to 8 h (AUC(0-8 h)) for weight and dose, only silybin B and silybin B conjugates differed significantly between disease types. For NAFLD, the adjusted mean AUC(0-8 h) was higher for silybin B (p < 0.05) but lower for silybin B conjugates (p < 0.05) compared with that for HCV. At the 280-mg dose, steady-state plasma concentrations of silybin B conjugates for NAFLD subjects were characterized by 46% lower AUC(0-8 h) (p < 0.05) and 42% lower C(max) (p < 0.05) compared with HCV subjects. Evidence of enterohepatic cycling of flavonolignans was only observed in NAFLD subjects. In summary, the efficacy of silymarin may be more readily observed in NAFLD patients because of their higher flavonolignan plasma concentrations and more extensive enterohepatic cycling compared with those in HCV patients.
    Drug metabolism and disposition: the biological fate of chemicals 08/2011; 39(12):2182-90. · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silymarin, derived from the milk thistle plant Silybum marianum, is widely used for self-treatment of liver diseases, including hepatitis C virus (HCV), and its antiviral activity has been demonstrated in vitro and in HCV patients administered an intravenous formulation of the major silymarin flavonolignans, silybin A and silybin B. The safety and dose-exposure relationships of higher than customary oral doses of silymarin and its acute effects on serum HCV RNA were evaluated in noncirrhotic HCV patients. Four cohorts of 8 patients with well-compensated, chronic noncirrhotic HCV who failed interferon-based therapy were randomized 3:1 to silymarin or placebo. Oral doses of 140, 280, 560, or 700 mg silymarin were administered every 8 hours for 7 days. Steady-state exposures for silybin A and silybin B increased 11-fold and 38-fold, respectively, with a 5-fold increase in dose, suggesting nonlinear pharmacokinetics. No drug-related adverse events were reported, and no clinically meaningful reductions from baseline serum transaminases or HCV RNA titer were observed. Oral doses of silymarin up to 2.1 g per day were safe and well tolerated. The nonlinear pharmacokinetics of silybin A and silybin B suggests low bioavailability associated with customary doses of silymarin may be overcome with doses above 700 mg.
    The Journal of Clinical Pharmacology 10/2009; 50(4):434-49. · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silymarin, used by 30 to 40% of liver disease patients, is composed of six major flavonolignans, each of which may contribute to silymarin's hepatoprotective properties. Previous studies have only described the pharmacokinetics for two flavonolignans, silybin A and silybin B, in healthy volunteers. The aim of this study was to determine the pharmacokinetics of the major silymarin flavonolignans in liver disease patients. Healthy volunteers and three patient cohorts were administered a single, 600-mg p.o. dose of milk thistle extract, and 14 blood samples were obtained over 24 h. Silybin A and B accounted for 43% of the exposure to the sum of total silymarin flavonolignans in healthy volunteers and only 31 to 38% in liver disease cohorts as a result of accumulation of silychristin (20-36%). Area under the curve (AUC(0-24h)) for the sum of total silymarin flavonolignans was 2.4-, 3.3-, and 4.7-fold higher for hepatitis C virus (HCV) noncirrhosis, nonalcoholic fatty liver disease (p <or= 0.03), and HCV cirrhosis cohorts (p <or= 0.03), respectively, compared with healthy volunteers (AUC(0-24h) = 2021 ng . h/ml). Caspase-3/7 activity correlated with the AUC(0-24h) for the sum of all silymarin conjugates among all subjects (R(2) = 0.52) and was 5-fold higher in the HCV cirrhosis cohort (p <or= 0.005 versus healthy). No correlation was observed with other measures of disease activity, including plasma alanine aminotransferase, interleukin 6, and 8-isoprostane F(2alpha), a measure of oxidative stress. These findings suggest that the pharmacokinetics of silymarin is altered in patients with liver disease. Patients with cirrhosis had the highest plasma caspase-3/7 activity and also achieved the highest exposures for the major silymarin flavonolignans.
    Drug metabolism and disposition: the biological fate of chemicals 06/2008; 36(9):1909-16. · 3.74 Impact Factor
  • Gastroenterology 04/2008; 134(4). · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silymarin, a mixture of polyphenolic flavonoids extracted from milk thistle (Silybum marianum), is composed mainly of silychristin, silydianin, silybin A, silybin B (SB(B)), isosilybin A (ISB(A)), and isosilybin B. In this study, the plasma concentrations of free (unconjugated), conjugated (sulfated and glucuronidated), and total (free and conjugated) silymarin flavonolignans were measured using liquid chromatography-electrospray ionization-mass spectrometry, after a single oral dose of 600 mg of standardized milk thistle extracts to three healthy volunteers. Pharmacokinetic analysis indicated that silymarin flavonolignans were rapidly eliminated with short half-lives (1-3 and 3-8 h for free and conjugated, respectively). The AUC(0-->infinity) values of the conjugated silymarin flavonolignans were 4- to 30-fold higher than those of their free fractions, with SB(B) (mean AUC(0-->infinity) = 51 and 597 microg x h/l for free and conjugated, respectively) and ISB(A) (mean AUC(0-->infinity) = 30 and 734 microg x h/l for free and conjugated, respectively) exhibiting higher AUC(0-->infinity) values in comparison with other flavonolignans. Near the plasma peak times (1-3 h), the free, sulfated, and glucuronidated flavonolignans represented approximately 17, 28, and 55% of the total silymarin, respectively. In addition, the individual silymarin flavonolignans exhibited quite different plasma profiles for both the free and conjugated fractions. These data suggest that, after oral administration, silymarin flavonolignans are quickly metabolized to their conjugates, primarily forming glucuronides, and the conjugates are primary components present in human plasma.
    Drug metabolism and disposition: the biological fate of chemicals 02/2008; 36(1):65-72. · 3.74 Impact Factor