Franklin I Aigbirhio

University of Cambridge, Cambridge, England, United Kingdom

Are you Franklin I Aigbirhio?

Claim your profile

Publications (136)572.8 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although late-phase (>35min post-administration) 11C-PiB-PET has good sensitivity in cerebral amyloid angiopathy (CAA), its specificity is poor due to frequently high uptake in healthy aged subjects. By detecting perfusion-like abnormalities, early-phase 11C-PiB-PET might add diagnostic value. Early-frame (1-6min) 11C-PiB-PET was obtained in 11 non-demented patients with probable CAA-related symptomatic lobar intracerebral haemorrhage (70±7yrs), 9 age-matched healthy controls (HCs) and 10 HCs <55yrs. There was a significant decrease in early-phase atrophy-corrected whole-cortex SUV relative to cerebellar vermis (SUVR) in the CAA vs age-matched HC group. None of the age-matched controls fell below the lower 95% confidence limit derived from the young HCs, while 6/11 CAA patients did (sensitivity = 55%, specificity = 100%). Combining both early- and late-phase 11C-PiB data did not change the sensitivity and specificity of late-phase PiB, but combined early- and late-phase positivity entails a very high suspicion of underlying Aβ-related clinical disorder, i.e., CAA or Alzheimer disease (AD). In order to clarify this ambiguity, we then show that the occipital/posterior cingulate ratio is markedly lower in CAA than in AD (N = 7). These pilot data suggest that early-phase 11C-PiB-PET may not only add to late-phase PiB-PET with respect to the unclear situation of late-phase positivity, but also help differentiate CAA from AD.
    PLoS ONE 10/2015; 10(10):e0139926. DOI:10.1371/journal.pone.0139926 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis. Methods: Forty-nine adults with DS aged 25-65 underwent positron emission tomography with Pittsburgh compound-B (PIB). Regional PIB binding was assessed with respect to age, clinical, and cognitive status. Results: Abnormal PIB binding became evident from 39 years, first in striatum followed by rostral prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary sensorimotor and occipital, and finally parahippocampal cortex, thalamus, and amygdala. PIB binding was related to age, diagnostic status, and cognitive function. Discussion: PIB binding in DS, first appearing in striatum, began around age 40 and was strongly associated with dementia and cognitive decline. The absence of a substantial time lag between amyloid accumulation and cognitive decline contrasts to sporadic/familial AD and suggests this population's suitability for an amyloid primary prevention trial.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 09/2015; DOI:10.1016/j.jalz.2015.07.490 · 12.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood-brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [(11)C]SB-216763, a high-affinity inhibitor of GSK-3 (K i = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [(11)C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [(11)C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [(11)C]SB-216763 in 1% noncorrected radiochemical yield (based upon [(11)C]CH3I) and 97-100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use.
    ACS Medicinal Chemistry Letters 05/2015; 6(5):548-552. DOI:10.1021/acsmedchemlett.5b00044 · 3.12 Impact Factor
  • Source

  • Patrick J. Riss · Waqas Rafique · Franklin I. Aigbirhio ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The positron emitter 18F is particularly well suited for positron emission tomography (PET) imaging owing to almost exclusive decay via the ß+ decay branch (97%) and very low positron energy (638 keV). With a half-life of 109.7 min, multistep procedures for radiolabeling with 18F are feasible. Multiple patient doses can be dispensed from a single production batch and even be shipped over moderate distances. This chapter discusses the radiosynthesis of [18F]trifluoroethyl tosylate. All radiochemical syntheses must be carried out using appropriate equipment in a facility authorized for the use of radioactive materials. Personal protective equipment must be worn, and all local radiation safety laws followed. The chapter discusses the quality control procedures. Rapid high-performance liquid chromatography (HPLC) purification was achieved using a low precursor concentration of unlabeled precursor, which is desirable to achieve demanding conditions for separation.

  • 05/2015; DOI:10.1530/endoabs.37.OC1.4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the relationship between magnetic resonance imaging-visible centrum semiovale perivascular spaces (CSO-PVS), a biomarker of impaired interstitial fluid drainage, and positron emission tomography-based amyloid-β burden across a wide range of cerebrovascular amyloid deposition. Thirty-one nondemented subjects (11 probable cerebral amyloid angiopathy patients and 10 healthy subjects ≥60 years; 10 older individuals, <60 years) had brain magnetic resonance imaging and Pittsburgh compound B-positron emission tomography. CSO-PVS was evaluated on T2-magnetic resonance imaging using a 4-point scale. The association between Pittsburgh compound B and CSO-PVS was assessed in linear regression. In multivariable analyses adjusted for age, microbleeds and white matter hyperintensities, whole cortex Pittsburgh compound B binding was associated with CSO-PVS degree both as continuous (coefficient, 0.11; 95% confidence interval, 0.01-0.22; P=0.040) and as dichotomous variable (coefficient, 0.27; 95% confidence interval, 0.11-0.44; P=0.002). The median Pittsburgh compound B retention was higher in high versus low CSO-PVS degree (P=0.0007). This pilot study suggests a possible association between cerebrovascular amyloid deposition and CSO-PVS, with potential pathophysiological implications. © 2015 American Heart Association, Inc.
    Stroke 04/2015; 46(6). DOI:10.1161/STROKEAHA.115.009090 · 5.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that impulsivity in rats is linked to decreased dopamine D2/3 receptor availability in the ventral striatum. In the present study, we investigated, using longitudinal positron emission tomography (PET), the effects of orally administered methylphenidate (MPH), a first-line treatment for attention deficit hyperactivity disorder, on D2/3 receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a five-choice serial reaction time task. After a baseline PET scan with the D2/3 ligand [(18)F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 d. Rats were then reassessed for impulsivity and underwent a second [(18)F]fallypride PET scan. Before MPH treatment, we found that D2/3 receptor availability was significantly decreased in the left but not the right ventral striatum of high-impulse (HI) rats compared with low-impulse (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D2/3 receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D2/3 receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D2/3 receptor availability in any of the striatal subregions investigated. These findings indicate that trait-like impulsivity is associated with decreased D2/3 receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D2/3 receptor availability through independent mechanisms. Copyright © 2015 the authors 0270-6474/15/353747-09$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 03/2015; 35(9):3747-55. DOI:10.1523/JNEUROSCI.3890-14.2015 · 6.34 Impact Factor
  • J Simpson · N Sudhan · H Hare · J Donnelly · X Liu · F Aigbirhio · T Fryer · G Stocks-Gee · P Smielewski · D Bulte · J Coles ·

    Critical Care 01/2015; 19(Suppl 1):P445. DOI:10.1186/cc14525 · 4.48 Impact Factor
  • Laurent Brichard · Franklin I. Aigbirhio ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The standard method used to generate reactive [18F]fluoride for [18F]radiolabelling is to trap it on an anion-exchange cartridge then elute it with a basic aqueous solution, which is then subjected to azeotropic evaporation to remove water. We have now developed a method through the use of tetraethylammonium hydrogen carbonate in which we can obtain efficient recovery of [18F]fluoride (up to 99 %), remove the requirement for the time-consuming and inefficient azeotropic evaporation process and produce a reactive [18F]fluoride that can undergo a wide range of aliphatic and aromatic [18F]nucleophilic substitutions in up to 93 % radiochemical conversion at end-of-synthesis in the presence or without water.
    European Journal of Organic Chemistry 10/2014; 2014(28). DOI:10.1002/ejoc.201402587 · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 05/2014; 34(22):7663-76. DOI:10.1523/JNEUROSCI.0718-14.2014 · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By detecting β-amyloid (Aβ) in the wall of cortical arterioles, amyloid positron emission tomography (PET) imaging might help diagnose cerebral amyloid angiopathy (CAA) in patients with lobar intracerebral hemorrhage (l-ICH). No previous study has directly assessed the diagnostic value of (11)C-Pittsburgh compound B (PiB) PET in probable CAA-related l-ICH against healthy controls (HCs). (11)C-PiB-PET and magnetic resonance imaging (MRI) including T2* were obtained in 11 nondemented patients fulfilling the Boston criteria for probable CAA-related symptomatic l-ICH (sl-ICH) and 20 HCs without cognitive complaints or impairment. After optimal spatial normalization, cerebral spinal fluid (CSF)-corrected PiB distribution volume ratios (DVRs) were obtained. There was no significant difference in whole cortex or regional DVRs between CAA patients and age-matched HCs. The whole cortex DVR was above the 95% confidence limit in 4/9 HCs and 10/11 CAA patients (sensitivity=91%, specificity=55%). Region/frontal or occipital ratios did not have better discriminative value. Similar but less accurate results were found using visual analysis. In patients with sl-ICH, (11)C-PiB-PET has low specificity for CAA due to the frequent occurrence of high (11)C-PiB uptake in the healthy elderly reflecting incipient Alzheimer's disease (AD), which might also be present in suspected CAA. However, a negative PiB scan rules out CAA with excellent sensitivity, which has clinical implications for prognostication and selection of candidates for drug trials.Journal of Cerebral Blood Flow & Metabolism advance online publication, 12 March 2014; doi:10.1038/jcbfm.2014.43.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 03/2014; 34(5). DOI:10.1038/jcbfm.2014.43 · 5.41 Impact Factor

  • Journal of Labelled Compounds and Radiopharmaceuticals 03/2014; 57(3):189-190. · 1.27 Impact Factor
  • Thomas Ruhl · Franklin I. Aigbirhio · Patrick J. Riss ·

    Journal of Labelled Compounds and Radiopharmaceuticals 03/2014; 57(3):179-180. · 1.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 22nd annual symposium of the International Isotope Society's United Kingdom Group took place at the Møller Centre, Churchill College, Cambridge, UK, on Friday, 18 October 2013. The meeting was attended by 65 delegates from academia and industry; the life sciences; and chemical, radiochemical and scientific instrument suppliers. Delegates were welcomed by Dr Ken Lawrie (GlaxoSmithKline, UK, chair of the IIS UK group). The subsequent scientific programme consisted of oral and poster presentations on isotopic chemistry and applications of labelled compounds, or of chemistry with potential implications for isotopic synthesis. Both short-lived and long-lived isotopes were represented, as were stable isotopes. The symposium programme was divided into a morning session chaired by Dr Karl Cable (GlaxoSmithKline, UK) and afternoon sessions chaired by Mr Mike Chappelle (Quotient Biosciences, UK) and by Dr Nick Bushby (AstraZeneca, UK). The UK meeting concluded with remarks from Dr Ken Lawrie (GlaxoSmithKline, UK).
    Journal of Labelled Compounds 01/2014; 52(6). DOI:10.1002/jlcr.3173 · 1.27 Impact Factor
  • L Li · L Brichard · L Larsen · D K Menon · R A J Smith · M P Murphy · F I Aigbirhio ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in the magnitude of the mitochondrial membrane potential occur in a range of important pathologies. To assess changes in membrane potential in patients, we set out to develop an improved mitochondria-targeted positron emission tomography probe comprising a lipophilic triphenylphosphonium cation attached to a fluorine-18 radionuclide via an 11-carbon alkyl chain, which is well-established to effectively transport to and localise within mitochondria. Here, we describe the radiosynthesis of this probe, 11-[(18) F]fluoroundecyl-triphenylphosphonium (MitoF), from no-carrier-added [(18) F]fluoride and a fully automated synthetic protocol to prepare it in good radiochemical yields (2-3 GBq at end-of-synthesis) and radiochemical purity (97-99%). Copyright © 2013 John Wiley & Sons, Ltd.
    Journal of Labelled Compounds 12/2013; 56(14):717-21. DOI:10.1002/jlcr.3109 · 1.27 Impact Factor

  • Circulation 11/2013; 128(A14673). · 14.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES To image amyloid deposition in patients with traumatic brain injury (TBI) using carbon 11-labeled Pittsburgh Compound B ([11C]PiB) positron emission tomography (PET) and to validate these findings using tritium-labeled PiB ([3H]PiB) autoradiography and immunocytochemistry in autopsy-acquired tissue. DESIGN, SETTING, AND PARTICIPANTS In vivo PET at tertiary neuroscience referral center and ex vivo immunocytochemistry of autopsy-acquired brain tissue from a neuropathology archive. [11C]PiB PET was used to image amyloid deposition in 11 controls (median [range] age, 35 [24-60] years) and in 15 patients (median [range] age, 33 [21-50] years) between 1 and 361 days after a TBI. [3H]PiB autoradiography and immunocytochemistry for β-amyloid (Aβ) and β-amyloid precursor protein in brain tissue were obtained from separate cohorts of 16 patients (median [range] age, 46 [21-70] years) who died between 3 hours and 56 days after a TBI and 7 controls (median [range] age, 61 [29-71] years) who died of other causes. MAIN OUTCOMES AND MEASURES We quantified the [11C]PiB distribution volume ratio and standardized uptake value ratio in PET images. The distribution volume ratio and the standardized uptake value ratio were measured in cortical gray matter, white matter, and multiple cortical and white matter regions of interest, as well as in striatal and thalamic regions of interest. We examined [3H]PiB binding and Aβ and β-amyloid precursor protein immunocytochemistry in autopsy-acquired brain tissue. RESULTS Compared with the controls, the patients with TBI showed significantly increased [11C]PiB distribution volume ratios in cortical gray matter and the striatum (corrected P < .05 for both), but not in the thalamus or white matter. Increases in [11C]PiB distribution volume ratios in patients with TBI were seen across most cortical subregions, were replicated using comparisons of standardized uptake value ratios, and could not be accounted for by methodological confounders. Autoradiography revealed [3H]PiB binding in neocortical gray matter, in regions where amyloid deposition was demonstrated by immunocytochemistry; white matter showed Aβ and β-amyloid precursor protein by immunocytochemistry, but no [3H]PiB binding. No plaque-associated amyloid immunoreactivity or [3H]PiB binding was seen in cerebellar gray matter in autopsy-acquired tissue from either controls or patients with TBI, although 1 sample of cerebellar tissue from a patient with TBI showed amyloid angiopathy in meningeal vessels. CONCLUSIONS AND RELEVANCE [11C]PiB shows increased binding following TBI. The specificity of this binding is supported by neocortical [3H]PiB binding in regions of amyloid deposition in the postmortem tissue of patients with TBI. [11C]PiB PET could be valuable in imaging amyloid deposition following TBI.
    11/2013; 71(1). DOI:10.1001/jamaneurol.2013.4847
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Through the combined use of (18)F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case-control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder.
    Brain 11/2013; 136(Pt 11):3252-70. DOI:10.1093/brain/awt263 · 9.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mapping the ischaemic penumbra in acute stroke is of considerable clinical interest. For this purpose, mapping tissue hypoxia with (18)F-misonidazole (FMISO) PET is attractive, and is straightforward compared to (15)O PET. Given the current emphasis on penumbra imaging using diffusion/perfusion MR or CT perfusion, investigating the relationships between FMISO uptake and abnormalities with these modalities is important. According to a prospective design, three patients (age 54-81 years; admission NIH stroke scale scores 16-22) with an anterior circulation stroke and extensive penumbra on CT- or MR-based perfusion imaging successfully completed FMISO PET, diffusion-weighted imaging and MR angiography 6-26 h after stroke onset, and follow-up FLAIR to map the final infarction. All had persistent proximal occlusion and a poor outcome despite thrombolysis. Significant FMISO trapping was defined voxel-wise relative to ten age-matched controls and mapped onto coregistered maps of the penumbra and irreversibly damaged ischaemic core. FMISO trapping was present in all patients (volume range 18-119 ml) and overlapped mainly with the penumbra but also with the core in each patient. There was a significant (p ≤ 0.001) correlation in the expected direction between FMISO uptake and perfusion, with a sharp FMISO uptake bend around the expected penumbra threshold. FMISO uptake had the expected overlap with the penumbra and relationship with local perfusion. However, consistent with recent animal data, our study suggests FMISO trapping may not be specific to the penumbra. If confirmed in larger samples, this preliminary finding would have potential implications for the clinical application of FMISO PET in acute ischaemic stroke.
    European Journal of Nuclear Medicine 10/2013; 41(4). DOI:10.1007/s00259-013-2581-x · 5.38 Impact Factor

Publication Stats

3k Citations
572.80 Total Impact Points


  • 2001-2015
    • University of Cambridge
      • • Department of Clinical Neurosciences
      • • Wolfson Brain Imaging Centre
      • • Behavioural and Clinical Neurosciences Institute (BCNI)
      Cambridge, England, United Kingdom
    • Keele University
      Newcastle-under-Lyme, England, United Kingdom
  • 2012
    • University of Surrey
      • Department of Chemistry
      Guilford, England, United Kingdom
  • 2007
    • Johnson & Johnson
      New Brunswick, New Jersey, United States
  • 1993-1997
    • Ealing, Hammersmith & West London College
      Londinium, England, United Kingdom
  • 1994-1995
    • MRC Clinical Sciences Centre
      London Borough of Harrow, England, United Kingdom