Prim B Singh

Charité Universitätsmedizin Berlin, Berlín, Berlin, Germany

Are you Prim B Singh?

Claim your profile

Publications (44)259.12 Total impact

  • Source
    Maria Manukyan, Prim B Singh
    [Show abstract] [Hide abstract]
    ABSTRACT: We measured the dynamics of an essential epigenetic modifier, HP1β, in human cells at different stages of differentiation using Fluorescence Recovery After Photobleaching (FRAP). We found that HP1β mobility is similar in human embryonic stem cells (hES) and iPS cells where it is more mobile compared to fibroblasts; HP1β is less mobile in senescent fibroblasts than in young (dividing) fibroblasts. Introduction of "reprogramming factors", Oct4, Sox2, Klf4, cMyc and Lin28, into senescent fibroblasts and measuring the changes in HP1β mobility as reprogramming proceeds shows that the mobility of HP1β in senescent cells increases and by day 9 is the same as that found in young fibroblasts. Thus the dynamics of a key epigenetic modifier can be rejuvenated without de-differentiation through an embryonic stage. Future work will test whether other aspects of cellular physiology that age can be so rejuvenated without de-differentiation.
    Scientific Reports 01/2014; 4:4789. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: In mouse embryonic stem cells (mESCs), transcriptional silencing of numerous class I and II endogenous retroviruses (ERVs), including IAP, ETn and MMERVK10C, is dependent upon the H3K9 methyltransferase (KMTase) SETDB1/ESET and its binding partner KAP1/TRIM28. In contrast, the H3K9 KMTases G9a and GLP and HP1 proteins are dispensable for this process. Intriguingly, MERVL retroelements are actively transcribed exclusively in the two-cell (2C) embryo, but the molecular basis of silencing of these class III ERVs at later developmental stages has not been systematically addressed. RESULTS: Here, we characterized the roles of these chromatin factors in MERVL silencing in mESCs. While MMERVK10C and IAP ERVs are bound by SETDB1 and KAP1 and are induced following their deletion, MERVL ERVs show relatively low levels of SETDB1 and KAP1 binding and are upregulated exclusively following KAP1 depletion, indicating that KAP1 influences MERVL expression independent of SETDB1. In contrast to class I and class II ERVs, MERVL and MERVL LTR-driven genic transcripts are also upregulated following depletion of G9a or GLP, and G9a binds directly to these ERVs. Consistent with a direct role for H3K9me2 in MERVL repression, these elements are highly enriched for G9a-dependent H3K9me2, and catalytically active G9a is required for silencing of MERVL LTR-driven transcripts. MERVL is also derepressed in HP1alpha and HP1beta KO ESCs. However, like KAP1, HP1alpha and HP1beta are only modestly enriched at MERVL relative to IAP LTRs. Intriguingly, as recently shown for KAP1, RYBP, LSD1 and G9a-deficient mESCs, many genes normally expressed in the 2C embryo are also induced in HP1 KO mESCs, revealing that aberrant expression of a subset of 2C-specific genes is a common feature in each of these KO lines. CONCLUSIONS: Our results indicate that G9a and GLP, which are not required for silencing of class I and II ERVs, are recruited to MERVL elements and play a direct role in silencing of these class III ERVs, dependent upon G9a catalytic activity. In contrast, induction of MERVL expression in KAP1, HP1alpha and HP1beta KO ESCs may occur predominantly as a consequence of indirect effects, in association with activation of a subset of 2C-specific genes.
    Epigenetics & Chromatin 06/2013; 6(1):15. · 4.19 Impact Factor
  • Source
    Epigenetics & Chromatin 11/2012; 5(1):18. · 4.19 Impact Factor
  • Source
    Maria Manukyan, Prim B Singh
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine.
    Genes to Cells 04/2012; 17(5):337-43. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous retroviruses (ERVs) are parasitic sequences whose derepression is associated with cancer and genomic instability. Many ERV families are silenced in mouse embryonic stem cells (mESCs) via SETDB1-deposited trimethylated lysine 9 of histone 3 (H3K9me3), but the mechanism of H3K9me3-dependent repression remains unknown. Multiple proteins, including members of the heterochromatin protein 1 (HP1) family, bind H3K9me2/3 and are involved in transcriptional silencing in model organisms. In this work, we address the role of such H3K9me2/3 "readers" in the silencing of ERVs in mESCs. We demonstrate that despite the reported function of HP1 proteins in H3K9me-dependent gene repression and the critical role of H3K9me3 in transcriptional silencing of class I and class II ERVs, the depletion of HP1α, HP1β and HP1γ, alone or in combination, is not sufficient for derepression of these elements in mESCs. While loss of HP1α or HP1β leads to modest defects in DNA methylation of ERVs or spreading of H4K20me3 into flanking genomic sequence, respectively, neither protein affects H3K9me3 or H4K20me3 in ERV bodies. Furthermore, using novel ERV reporter constructs targeted to a specific genomic site, we demonstrate that, relative to Setdb1, knockdown of the remaining known H3K9me3 readers expressed in mESCs, including Cdyl, Cdyl2, Cbx2, Cbx7, Mpp8, Uhrf1 and Jarid1a-c, leads to only modest proviral reactivation. Taken together, these results reveal that each of the known H3K9me3-binding proteins is dispensable for SETDB1-mediated ERV silencing. We speculate that H3K9me3 might maintain ERVs in a silent state in mESCs by directly inhibiting deposition of active covalent histone marks.
    Epigenetics & Chromatin 07/2011; 4(1):12. · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: H3 lysine 9 trimethylation (H3K9me3) is a histone posttranslational modification (PTM) that has emerged as hallmark of pericentromeric heterochromatin. This constitutive chromatin domain is composed of repetitive DNA elements, whose transcription is differentially regulated. Mammalian cells contain three HP1 proteins, HP1α, HP1β and HP1γ These have been shown to bind to H3K9me3 and are thought to mediate the effects of this histone PTM. However, the mechanisms of HP1 chromatin regulation and the exact functional role at pericentromeric heterochromatin are still unclear. Here, we identify activity-dependent neuroprotective protein (ADNP) as an H3K9me3 associated factor. We show that ADNP does not bind H3K9me3 directly, but that interaction is mediated by all three HP1 isoforms in vitro. However, in cells ADNP localization to areas of pericentromeric heterochromatin is only dependent on HP1α and HP1β. Besides a PGVLL sequence patch we uncovered an ARKS motif within the ADNP homeodomain involved in HP1 dependent H3K9me3 association and localization to pericentromeric heterochromatin. While knockdown of ADNP had no effect on HP1 distribution and heterochromatic histone and DNA modifications, we found ADNP silencing major satellite repeats. Our results identify a novel factor in the translation of H3K9me3 at pericentromeric heterochromatin that regulates transcription.
    PLoS ONE 01/2011; 6(1):e15894. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using an in vitro model for the differentiation of human blood-derived monocytes into dendritic cells (DCs), we have undertaken an investigation of epigenetic changes that take place at CD14 and CD209 (DC-SIGN) genes that encode cell surface antigens that are crucial for the function of monocytes and DCs, respectively. Upon differentiation the cell surface expression of CD14 is lost, whilst CD209 expression is increased. These reciprocal changes are associated with the loss of epigenetic markers of "activation" at the CD14 locus, but the acquisition of the same at the CD209 locus. There is little change in "repressive" histone marks and CpG methylation at the CD14 locus. By contrast there are changes in both the "repressive" histone marks and CpG methylation at the CD209 locus. In particular, two CpG dinucleotides, designated CpG2 and CpG3, show a marked demethylation at the CD209 promoter upon differentiation. These data provide insight into the epigenetic demands that are necessary to effect the reciprocal changes in expression of the CD14 and CD209 genes upon terminal differentiation of monocytes into DCs. For repression of the active CD14 gene the loss of "activation" histone modifications is likely necessary and sufficient for silencing. By contrast the activation of the silent CD209 gene appears to require an acquisition of "active" histone modifications and concomitant loss of both "repressive" histone marks and CpG methylation.
    Epigenetics: official journal of the DNA Methylation Society 01/2011; 6(1):45-51. · 4.58 Impact Factor
  • Source
    Prim B Singh, Fred Zacouto
    Journal of Biosciences 06/2010; 35(2):315-9. · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HP1 proteins are conserved components of eukaryotic constitutive heterochromatin. In mammals, there are three genes that encode HP1-like proteins, termed HP1alpha, HP1beta and HP1gamma, which have a high degree of homology This paper describes for the first time, to our knowledge, the physiological function of HP1gamma using a gene-targeted mouse. While targeting the Cbx3 gene (encoding the HP1gamma protein) with a conditional targeting vector, we generated a hypomorphic allele (Cbx3hypo), which resulted in much reduced (barely detectable) levels of HP1gamma protein. Homozygotes for the hypomorphic allele (Cbx3hypo/hypo) are rare, with only 1% of Cbx3hypo/hypo animals reaching adulthood. Adult males exhibit a severe hypogonadism that is associated with a loss of germ cells, with some seminiferous tubules retaining only the supporting Sertoli cells (Sertoli cell-only phenotype). The percentage of seminiferous tubules that are positive for L1 ORF1 protein (ORF1p) in Cbx3hypo/hypo testes is greater than that for wild-type testes, indicating that L1 retrotransposon silencing is reversed, leading to ectopic expression of ORF1p in Cbx3hypo/hypo germ cells. The Cbx3 gene product (the HP1gamma protein) has a non-redundant function during spermatogenesis that cannot be compensated for by the other two HP1 isotypes. The Cbx3hypo/hypo spermatogenesis defect is similar to that found in Miwi2 and Dnmt3L mutants. The Cbx3 gene-targeted mice generated in this study provide an appropriate model for the study of HP1gamma in transposon silencing and parental imprinting.
    Epigenetics & Chromatin 01/2010; 3(1):9. · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells (MCs) play a critical role in innate and adaptive immunity through the release of cytokines, chemokines, lipid mediators, biogenic amines, and proteases. We recently showed that the activities of MC proteases are transcriptionally regulated by intracellularly retained interleukin-15 (IL-15), and we provided evidence that this cytokine acts as a specific regulator of mouse mast cell protease-2 (mMCP-2). Here, we show that in wild-type bone marrow-derived mast cells (BMMCs) IL-15 inhibits mMCP-2 transcription indirectly by inducing differential expression and mMCP-2 promoter binding of the bifunctional transcription factors C/EBPbeta and YY1. In wild-type BMMCs, C/EBPbeta expression predominates over YY1 expression, and thus C/EBPbeta preferentially binds to the mMCP-2 promoter. In IL-15-deficient BMMCs, the opposite is found: YY1 expression predominates and binds to the mMCP-2 promoter at the expense of C/EBPbeta. Hypertranscription of the mMCP-2 gene in IL-15-deficient BMMCs is associated with histone acetylation and, intriguingly, with methylation of non-CpG dinucleotides within the MCP-2 promoter. This suggests a novel model of cytokine-controlled protease transcription: non-CpG methylation maintains a chromosomal domain in an "open" configuration that is permissive for gene expression.
    Journal of Biological Chemistry 10/2009; 284(47):32635-41. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large body of work in various organisms has shown that the presence of HP1 structural proteins and methylated lysine 9 of histone H3 (H3K9me) represent the characteristic hallmarks of heterochromatin. We propose that a more critical assessment of the physiological importance of the H3K9me-HP1 interaction is warranted in light of recent studies on the mammalian HP1 beta protein. Based on this new research, we conclude that the essential function of HP1 beta (and perhaps that of its orthologues in other species) lies outside the canonical heterochromatic H3K9me-HP1 interaction. We suggest instead that binding of a small fraction of HP1 beta to the H3 histone fold performs a critical role in heterochromatin function and organismal survival.
    Trends in Biochemical Sciences 10/2009; 35(2):115-23. · 13.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The HP1 class of chromobox (Cbx) genes encode an evolutionarily conserved family of proteins involved in the packaging of chromosomal domains into a repressive heterochromatic state. The murine Cbx5, Cbxl and Cbx3 genes encode the three mouse HP1 proteins, mHPlot, -β and -γ respectively. Here, we report the cloning of the mouse Cbx31 HPlγ gene and the chromosomal localisation of Cbx3 and three Cfo3-related pseudogenes. The Cbx3 structural gene is located on mouse Chromosome 6, close to the Hoxa cluster. Two Cbx3 processed pseudogenes are separated by just 300 bp and are arranged in a head-to-tail configuration on Chromosome 13 while a third pseu-dogene is found on mouse Chromosome 4. The genomic intron-exon arrangement of Cbx3 is different from the conserved organisation of three other mammalian HP1 genes, Cbxl (mHPip), CBX3 (hHPly), and Cbx5 (mHPla) in that Cbx3 lacks an intron that is present in the others.
    Mitochondrial DNA 07/2009; 12(3):147-160. · 1.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of sex-specific epigenetic marks during gametogenesis is one of the key feature of genomic imprinting. By immunocytological analysis, we thoroughly characterized the chromatin remodeling events that take place during gametogenesis in the mealybug Planococcus citri, in which an entire haploid set of (imprinted) chromosomes undergoes facultative heterochromatinization in male embryos. Building on our previous work, we have investigated the interplay of several epigenetic marks in the regulation of this genome-wide phenomenon. We characterized the germline patterns of histone modifications, Me(3)K9H3, Me(2)K9H3, and Me(3)K20H4, and of heterochromatic proteins, PCHET2 (HP1-like) and HP2-like during male and female gametogenesis. We found that at all stages in oogenesis chromatin is devoid of any detectable epigenetic marks. On the other hand, spermatogenesis is accompanied by a complex pattern of redistribution of epigenetic marks from euchromatin to heterochromatin, and vice versa. At the end of spermatogenesis, sperm heads are decorated by all the molecules we tested, except for PCHET2. However, only Me(3)K9H3 and Me(2)K9H3 are still detectable in the male pronucleus. We suggest that the histone H3 lysine 9 methylation is the signal used to establish the male-specific imprinting on the paternal genome, thus allowing it to be distinguished from the maternal genome in the developing embryo.
    Chromosoma 06/2009; 118(4):501-12. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HP1 proteins are thought to be modulators of chromatin organization in all mammals, yet their exact physiological function remains unknown. In a first attempt to elucidate the function of these proteins in vivo, we disrupted the murine Cbx1 gene, which encodes the HP1-beta isotype, and show that the Cbx1(-/-) -null mutation leads to perinatal lethality. The newborn mice succumbed to acute respiratory failure, whose likely cause is the defective development of neuromuscular junctions within the endplate of the diaphragm. We also observe aberrant cerebral cortex development in Cbx1(-/-) mutant brains, which have reduced proliferation of neuronal precursors, widespread cell death, and edema. In vitro cultures of neurospheres from Cbx1(-/-) mutant brains reveal a dramatic genomic instability. Our results demonstrate that HP1 proteins are not functionally redundant and that they are likely to regulate lineage-specific changes in heterochromatin organization.
    The Journal of Cell Biology 12/2008; 183(4):597-606. · 10.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have compared the distribution of endogenous heterochromatin protein 1 (HP1) proteins (alpha, beta and gamma) in different epithelial lines, pluripotent stem cells and embryonic fibroblasts. In parallel, we have interrogated assembly and dynamics of newly expressed HP1-GFP proteins in cells lacking both HP1alpha and HP1beta alleles, blocked at the G1-S boundary, or cultured in the presence of HDAC and HAT inhibitors. The results reveal a range of cell type and differentiation state-specific patterns that do not correlate with 'fast' or 'slow' subunit exchange in heterochromatin. Furthermore, our observations show that targeting of HP1gamma to heterochromatic sites depends on HP1alpha and H1beta and that, on an architectural level, HP1alpha is the most polymorphic variant of the HP1 family. These data provide evidence for HP1 plasticity under shifting microenvironmental conditions and offer a new conceptual framework for understanding chromatin dynamics at the molecular level.
    Journal of Cell Science 11/2007; 120(Pt 19):3415-24. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using RNA interference (RNAi) we have conducted a functional analysis of the HP1-like chromobox gene pchet2 during embryogenesis of the mealybug Planococcus citri. Knocking down pchet2 expression results in decondensation of the male-specific chromocenter that normally arises from the developmentally-regulated facultative heterochromatinisation of the paternal chromosome complement. Together with the disappearance of the chromocenter the staining levels of two associated histone modifications, tri-methylated lysine 9 of histone H3 [Me(3)K9H3] and tri-methylated lysine 20 of histone H4 [Me(3)K20H4], are reduced to undetectable levels. Embryos treated with double-stranded RNA (dsRNA) targeting pchet2 also exhibit chromosome abnormalities, such as aberrant chromosome condensation, and also the presence of metaphases that contain 'lagging' chromosomes. We conclude that PCHET2 regulates chromosome behavior during metaphase and is a crucial component of a Me(3)K9H3-HP1-Me(3)K20H4 pathway involved in the facultative heterochromatinisation of the (imprinted) paternal chromosome set.
    Journal of Cell Science 04/2007; 120(Pt 6):1072-80. · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The product of the Scmh1 gene, a mammalian homolog of Drosophila Sex comb on midleg, is a constituent of the mammalian Polycomb repressive complexes 1 (Prc1). We have identified Scmh1 as an indispensable component of the Prc1. During progression through pachytene, Scmh1 was shown to be excluded from the XY body at late pachytene, together with other Prc1 components such as Phc1, Phc2, Rnf110 (Pcgf2), Bmi1 and Cbx2. We have identified the role of Scmh1 in mediating the survival of late pachytene spermatocytes. Apoptotic elimination of Scmh1(-/-) spermatocytes is accompanied by the preceding failure of several specific chromatin modifications at the XY body, whereas synapsis of homologous autosomes is not affected. It is therefore suggested that Scmh1 is involved in regulating the sequential changes in chromatin modifications at the XY chromatin domain of the pachytene spermatocytes. Restoration of defects in Scmh1(-/-) spermatocytes by Phc2 mutation indicates that Scmh1 exerts its molecular functions via its interaction with Prc1. Therefore, for the first time, we are able to indicate a functional involvement of Prc1 during the meiotic prophase of male germ cells and a regulatory role of Scmh1 for Prc1, which involves sex chromosomes.
    Development 03/2007; 134(3):579-90. · 6.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly phosphorylated following exposure of cells to double-strand break (DSB) inducing agents such as ionising radiation. Within minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand breaks (DSBs); these domains can be observed by immunofluorescence microscopy and are termed gammaH2AX foci. H2AX phosphorylation is believed to have a role mounting an efficient cellular response to DNA damage. Theoretical considerations suggest an essentially random chromosomal distribution of X-ray induced DSBs, and experimental evidence does not consistently indicate otherwise. However, we observed an apparently uneven distribution of gammaH2AX foci following X-irradiation with regions of the nucleus devoid of foci. Using immunofluorescence microscopy, we show that focal phosphorylation of histone H2AX occurs preferentially in euchromatic regions of the genome following X-irradiation. H2AX phosphorylation has also been demonstrated previously to occur at stalled replication forks induced by UV radiation or exposure to agents such as hydroxyurea. In this study, treatment of S-phase cells with hydroxyurea lead to efficient H2AX phosphorylation in both euchromatin and heterochromatin at times when these chromatin compartments were undergoing replication. This suggests a block to H2AX phosphorylation in heterochromatin that is at least partially relieved by ongoing DNA replication. We discuss a number of possible mechanisms that could account for the observed pattern of H2AX phosphorylation. Since gammaH2AX is regarded as forming a platform for the recruitment or retention of other DNA repair and signaling molecules, these findings imply that the processing of DSBs in heterochromatin differs from that in euchromatic regions. The differential responses of heterochromatic and euchromatic compartments of the genome to DSBs will have implications for understanding the processes of DNA repair in relation to nuclear and chromatin organization.
    PLoS ONE 02/2007; 2(10):e1057. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-21 is the most recently discovered member of the type-I cytokine family. Structurally, IL-21 shows homology to IL-2, IL-4, and IL-15 proteins. IL-21 shares the common gamma-chain with the other three cytokines but, in addition, binds to a unique IL-21Ralpha chain, and activates the JAK/STAT pathway. IL-21 is mainly produced by activated T-cells but targets a broad range of lymphoid and myeloid cells of the immune system and therefore is able to regulate innate and acquired immune responses. This review intends to give the reader an overview of the recent findings concerning the biology of IL-21 and its physiological role in immunity, infection, and cancer.
    Cytokine & Growth Factor Reviews 01/2007; 18(3-4):223-32. · 8.83 Impact Factor
  • Source
    Rong Wu, Prim B Singh, David M Gilbert
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse chromocenters are clusters of late-replicating pericentric heterochromatin containing HP1 bound to trimethylated lysine 9 of histone H3 (Me3K9H3). Using a cell-free system to initiate replication within G1-phase nuclei, we demonstrate that chromocenters acquire the property of late replication coincident with their reorganization after mitosis and the establishment of a global replication timing program. HP1 dissociated during mitosis but rebound before the establishment of late replication, and removing HP1 from chromocenters by competition with Me3K9H3 peptides did not result in early replication, demonstrating that this interaction is neither necessary nor sufficient for late replication. However, in cells lacking the Suv39h1,2 methyltransferases responsible for K9H3 trimethylation and HP1 binding at chromocenters, replication of chromocenter DNA was advanced by 10-15% of the length of S phase. Reintroduction of Suv39h1 activity restored the later replication time. We conclude that Suv39 activity is required for the fine-tuning of pericentric heterochromatin replication relative to other late-replicating domains, whereas separate factors establish a global replication timing program during early G1 phase.
    The Journal of Cell Biology 08/2006; 174(2):185-94. · 10.82 Impact Factor

Publication Stats

2k Citations
259.12 Total Impact Points


  • 2012–2013
    • Charité Universitätsmedizin Berlin
      • Institute of Cell Biology and Neurobiology
      Berlín, Berlin, Germany
    • University of Freiburg
      • BIOSS Centre for Biological Signalling Studies
      Freiburg, Lower Saxony, Germany
  • 2002–2012
    • Research Center Borstel
      • • Department of Immunology and Cell Biology
      • • Division of Molecular Immunology
      Borstel, Lower Saxony, Germany
  • 2009
    • Babraham Institute
      Cambridge, England, United Kingdom
  • 2004–2007
    • University of Ioannina
      • School of Medicine
      Ioánnina, Ipeiros, Greece
    • University of Antwerp
      • Faculteit Geneeskunde en Gezondheidswetenschappen
      Antwerpen, VLG, Belgium
    • University of Crete
      • Division of Basic Sciences
      Retimo, Crete, Greece
  • 2000–2006
    • The Roslin Institute
      Edinburgh, Scotland, United Kingdom