Elina Hyppönen

University of South Australia, Tarndarnya, South Australia, Australia

Are you Elina Hyppönen?

Claim your profile

Publications (104)989.76 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate, using a Mendelian randomisation approach, whether heavier smoking is associated with a range of regional adiposity phenotypes, in particular those related to abdominal adiposity. Mendelian randomisation meta-analyses using a genetic variant (rs16969968/rs1051730 in the CHRNA5-CHRNA3-CHRNB4 gene region) as a proxy for smoking heaviness, of the associations of smoking heaviness with a range of adiposity phenotypes. 148 731 current, former and never-smokers of European ancestry aged ≥16 years from 29 studies in the consortium for Causal Analysis Research in Tobacco and Alcohol (CARTA). Waist and hip circumferences, and waist-hip ratio. The data included up to 66 809 never-smokers, 43 009 former smokers and 38 913 current daily cigarette smokers. Among current smokers, for each extra minor allele, the geometric mean was lower for waist circumference by -0.40% (95% CI -0.57% to -0.22%), with effects on hip circumference, waist-hip ratio and body mass index (BMI) being -0.31% (95% CI -0.42% to -0.19), -0.08% (-0.19% to 0.03%) and -0.74% (-0.96% to -0.51%), respectively. In contrast, among never-smokers, these effects were higher by 0.23% (0.09% to 0.36%), 0.17% (0.08% to 0.26%), 0.07% (-0.01% to 0.15%) and 0.35% (0.18% to 0.52%), respectively. When adjusting the three central adiposity measures for BMI, the effects among current smokers changed direction and were higher by 0.14% (0.05% to 0.22%) for waist circumference, 0.02% (-0.05% to 0.08%) for hip circumference and 0.10% (0.02% to 0.19%) for waist-hip ratio, for each extra minor allele. For a given BMI, a gene variant associated with increased cigarette consumption was associated with increased waist circumference. Smoking in an effort to control weight may lead to accumulation of central adiposity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
    BMJ Open 08/2015; 5(8):e008808. DOI:10.1136/bmjopen-2015-008808 · 2.27 Impact Factor
  • Source
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.
    Nature Genetics 05/2015; 47(6). DOI:10.1038/ng.3300 · 29.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis
    Nature 02/2015; 518(7538). DOI:10.1038/nature14177 · 41.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously used a single nucleotide polymorphism (SNP) in the CHRNA5-A3-B4 gene cluster associated with heaviness of smoking within smokers to confirm the causal effect of smoking in reducing body mass index (BMI) in a Mendelian randomisation analysis. While seeking to extend these findings in a larger sample we found that this SNP is associated with 0.74% lower body mass index (BMI) per minor allele in current smokers (95% CI -0.97 to -0.51, P = 2.00×10-10), but also unexpectedly found that it was associated with 0.35% higher BMI in never smokers (95% CI +0.18 to +0.52, P = 6.38×10-5). An interaction test confirmed that these estimates differed from each other (P = 4.95×10-13). This difference in effects suggests the variant influences BMI both via pathways unrelated to smoking, and via the weight-reducing effects of smoking. It would therefore be essentially undetectable in an unstratified genome-wide association study of BMI, given the opposite association with BMI in never and current smokers. This demonstrates that novel associations may be obscured by hidden population sub-structure. Stratification on well-characterized environmental factors known to impact on health outcomes may therefore reveal novel genetic associations.
    PLoS Genetics 12/2014; 10(12). DOI:10.1371/journal.pgen.1004799 · 7.53 Impact Factor
  • K.S. Vimaleswaran · C. Power · E. Hyppönen
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim 25-hydroxyvitamin D (25OHD) concentrations have been shown to be associated with major clinical outcomes, with a suggestion that individual risk may vary according to common genetic differences in the vitamin D receptor (VDR) gene. Hence, we tested for the interactions between two previously studied VDR polymorphisms and 25OHD on metabolic and cardiovascular disease-related outcomes in a large population-based study. Methods Interactions between two previously studied VDR polymorphisms (rs7968585 and rs2239179) and 25OHD concentrations on metabolic and cardiovascular disease-related outcomes such as obesity- (body mass index, waist circumference, waist-hip ratio (WHR)), cardiovascular- (systolic and diastolic blood pressure), lipid- (high- and low-density lipoprotein, triglycerides, total cholesterol), inflammatory- (C-reactive protein, fibrinogen, insulin growth factor-1, tissue plasminogen activator) and diabetes- (glycated haemoglobin) related markers were examined in the 1958 British Birth cohort (n up to 5160). Interactions between each SNP and 25OHD concentrations were assessed using linear regression and the likelihood ratio test. Results After Bonferroni correction, none of the interactions reached statistical significance except for the interaction between the VDR SNP rs2239179 and 25OHD concentrations on waist-hip ratio (WHR) (P = 0.03). For every 1 nmol/L higher 25OHD concentrations, the association with WHR was stronger among those with two major alleles (−4.0%, P = 6.26e−24) compared to those with either one or no major alleles (−2.3%, P ≤ 8.201e−07, for both) of the VDR SNP rs2239179. Conclusion We found no evidence for VDR polymorphisms acting as major modifiers of the association between 25OHD concentrations and cardio-metabolic risk. Interaction between VDR SNP rs2239179 and 25OHD on WHR warrants further confirmation.
    Diabetes & Metabolism 11/2014; 40(5). DOI:10.1016/j.diabet.2014.01.003 · 3.27 Impact Factor
  • George Davey Smith · Elina Hyppönen · Max Moldovan · Chris Power
    European Journal of Epidemiology 11/2014; 29(11):859-861. DOI:10.1007/s10654-014-9962-8 · 5.34 Impact Factor
  • J Maddock · A Cavadino · C Power · E Hyppönen
    [Show abstract] [Hide abstract]
    ABSTRACT: Both high and low vitamin D statuses have been associated with lower memory function. Apolipoprotein E (APOE) ɛ4 alleles have been associated with reduced memory function, and separately with higher vitamin D concentrations. This report aims to examine if the presence of APOE ɛ4 alleles contributes to the relationship between vitamin D and memory function. A total of 4848 (46% female) participants from the 1958 British birth cohort had information on APOE genotypes and completed memory tests at 50 years, where 4644 also had 25-hydroxyvitamin D (25(OH)D) concentrations measured at 45 years. Both low and high 25(OH)D concentrations were associated with lower memory function after adjustment for number of APOE ɛ4 alleles (Pcurvature=0.02). There was evidence of interaction between APOE ɛ4 and 25(OH)D, suggesting the association between 25(OH)D concentrations and memory function is different for those with two APOE ɛ4 alleles compared with those with zero or one APOE ɛ4 alleles (recessive model Pinteraction=0.01). Among participants with two APOE ɛ4 alleles, higher 25(OH)D concentrations were associated with higher memory function, whereas in others, memory scores were slightly lower for individuals with higher versus lower concentrations. Further studies are required to replicate these findings.European Journal of Clinical Nutrition advance online publication, 8 October 2014; doi:10.1038/ejcn.2014.201.
    European Journal of Clinical Nutrition 10/2014; 69(4). DOI:10.1038/ejcn.2014.201 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.Molecular Psychiatry advance online publication, 7 October 2014; doi:10.1038/mp.2014.107.
    Molecular Psychiatry 10/2014; 20(5). DOI:10.1038/mp.2014.107 · 14.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives To investigate whether associations of smoking with depression and anxiety are likely to be causal, using a Mendelian randomisation approach. Design Mendelian randomisation meta-analyses using a genetic variant (rs16969968/rs1051730) as a proxy for smoking heaviness, and observational meta-analyses of the associations of smoking status and smoking heaviness with depression, anxiety and psychological distress. Participants Current, former and never smokers of European ancestry aged ≥16 years from 25 studies in the Consortium for Causal Analysis Research in Tobacco and Alcohol (CARTA). Primary outcome measures Binary definitions of depression, anxiety and psychological distress assessed by clinical interview, symptom scales or self-reported recall of clinician diagnosis. Results The analytic sample included up to 58 176 never smokers, 37 428 former smokers and 32 028 current smokers (total N=127 632). In observational analyses, current smokers had 1.85 times greater odds of depression (95% CI 1.65 to 2.07), 1.71 times greater odds of anxiety (95% CI 1.54 to 1.90) and 1.69 times greater odds of psychological distress (95% CI 1.56 to 1.83) than never smokers. Former smokers also had greater odds of depression, anxiety and psychological distress than never smokers. There was evidence for positive associations of smoking heaviness with depression, anxiety and psychological distress (ORs per cigarette per day: 1.03 (95% CI 1.02 to 1.04), 1.03 (95% CI 1.02 to 1.04) and 1.02 (95% CI 1.02 to 1.03) respectively). In Mendelian randomisation analyses, there was no strong evidence that the minor allele of rs16969968/rs1051730 was associated with depression (OR=1.00, 95% CI 0.95 to 1.05), anxiety (OR=1.02, 95% CI 0.97 to 1.07) or psychological distress (OR=1.02, 95% CI 0.98 to 1.06) in current smokers. Results were similar for former smokers. Conclusions Findings from Mendelian randomisation analyses do not support a causal role of smoking heaviness in the development of depression and anxiety.
    BMJ Open 10/2014; 4. DOI:10.1136/bmjopen-2014-006141 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. Design Mendelian randomisation meta-analysis of 56 epidemiological studies. Participants 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. Main outcome measures Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption. Results Carriers of the A-allele of ADH1B rs1229984 consumed 17.2% fewer units of alcohol per week (95% confidence interval 15.6% to 18.9%), had a lower prevalence of binge drinking (odds ratio 0.78 (95% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (−0.88 (−1.19 to −0.56) mm Hg), interleukin-6 levels (−5.2% (−7.8 to −2.4%)), waist circumference (−0.3 (−0.6 to −0.1) cm), and body mass index (−0.17 (−0.24 to −0.10) kg/m2). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)). Conclusions Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health.
    BMJ (online) 07/2014; 349. DOI:10.1136/bmj.g4164 · 17.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. Methods In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. Findings In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, −0·12 mm Hg, 95% CI −0·20 to −0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97—0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, −0·02 mm Hg, −0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of −0·10 mm Hg in systolic blood pressure (−0·21 to −0·0001; p=0·0498) and a change of −0·08 mm Hg in diastolic blood pressure (−0·15 to −0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96—0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of −0·29 mm Hg in diastolic blood pressure (−0·52 to −0·07; p=0·01), a change of −0·37 mm Hg in systolic blood pressure (−0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87—0·97; p=0·002). Interpretation Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
    The Lancet Diabetes & Endocrinology 06/2014; DOI:10.1016/S2213-8587(14)70113-5 · 9.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR(-/-)) and CYP27B1 knock out (CYP27B1 (-/-)) mouse models: Both VDR(-/-) and CYP27B1(-/-) models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.
    Frontiers in Physiology 06/2014; 5:228. DOI:10.3389/fphys.2014.00228 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about genes regulating male puberty. Further, while many identified pubertal timing variants associate with age at menarche, a late manifestation of puberty, and body mass, little is known about these variants' relationship to pubertal initiation or tempo. To address these questions, we performed genome-wide association meta-analysis in over 11,000 European samples with data on early pubertal traits, male genital and female breast development, measured by the Tanner scale. We report the first genome-wide significant locus for male sexual development upstream of MKL2 (P=8.9 x 10(-9)), a menarche locus tagging a developmental pathway linking earlier puberty with reduced pubertal growth (P=4.6 x 10(-5)) and short adult stature (P=1.1 x 10(-11)) in both males and females. Furthermore, our results indicate that a proportion of menarche loci are important for pubertal initiation in both sexes.Consistent with epidemiological correlations between increased prepubertal body mass and earlier pubertal timing in girls, BMI-increasing alleles correlated with earlier breast development. In boys, some BMI-increasing alleles associated with earlier, and others with delayed, sexual development; these genetic results mimic the controversy in epidemiological studies, some of which show opposing correlations between prepubertal BMI and male puberty. Our results contribute to our understanding of the pubertal initiation program in both sexes, and indicate that although mechanisms regulating pubertal onset in males and females may largely be shared, the relationship between body mass and pubertal timing in boys may be complex and requires further genetic studies.
    Human Molecular Genetics 04/2014; DOI:10.1093/hmg/ddu150 · 6.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.
    BMC Genetics 03/2014; 15(1):37. DOI:10.1186/1471-2156-15-37 · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/aims: Vitamin D may protect from pre-eclampsia through influences on immune modulation and vascular function. To evaluate the role of vitamin D in the development of pre-eclampsia, we conducted a systematic review and meta-analysis including novel data from 2 large-scale epidemiological studies. Methods: PubMed, EMBASE and the Cochrane Central Register of Controlled Trials were searched for prospective observational studies of association between vitamin D supplementation or status (measured by maternal 25-hydroxyvitamin D, 25(OH)D) with a subsequent risk of pre-eclampsia, or randomised controlled trials using vitamin D supplementation to prevent pre-eclampsia. The Hungarian Case-Control Surveillance of Congenital Abnormalities (HCCSCA) and the Avon Longitudinal Study of Parents and Children (ALSPAC) were included in meta-analyses with published studies. Results: Mothers receiving vitamin D supplementation earlier in pregnancy had lower odds of pre-eclampsia [pooled odds ratios (OR) 0.81 and 95% confidence interval (CI) 0.75-0.87, p = 2.4 × 10(-8), 2 studies] in the meta-analysis of published studies with HCCSCA. The meta-analysis of published studies with ALSPAC suggested an association between higher serum 25(OH)D levels and a reduced risk of pre-eclampsia (pooled OR 0.52 and 95% CI 0.30-0.89, p = 0.02, 6 studies). Randomised trials of supplementation were suggestive of protective association (pooled OR 0.66 and 95% CI 0.52-0.83, p = 0.001, 4 studies). Conclusions: This study suggests that low maternal serum 25(OH)D concentrations increase pre-eclampsia risk and that vitamin D supplementation lowers this risk. The quality of evidence is insufficient to determine a causal association, which highlights the need for adequately powered clinical trials.
    Annals of Nutrition and Metabolism 02/2014; 63(4):331-340. DOI:10.1159/000358338 · 2.62 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypovitaminosis D has been linked with poor cognitive function, particularly in older adults, but studies lack a lifespan approach; hence, the effects of reverse causality remain unknown. In the present study, we aimed to assess the relationship between 25-hydroxyvitamin D (25(OH)D) concentrations and subsequent cognitive performance in mid-adulthood and the influence of earlier life factors, including childhood cognitive ability, on this association. Information for the present study was obtained from the members of the 1958 British birth cohort (n 6496). Serum 25(OH)D concentration, indicating vitamin D status, was measured at age 45 years. Verbal memory (immediate and delayed word recall), verbal fluency (animal naming) and speed of processing were tested at age 50 years. Information on childhood cognitive ability, educational attainment, vitamin D-related behaviours and other covariates was collected prospectively from participants throughout their life. Childhood cognitive ability and educational attainment by age 42 years were strongly correlated with cognitive performance at age 50 years and with several vitamin D-related behaviours in mid-adulthood, but not with 25(OH)D concentrations at age 45 years. Participants with both low ( < 25 nmol/l) and high ( ≥ 75 nmol/l) 25(OH)D concentrations at age 45 years performed significantly worse on immediate word recall. The associations attenuated after adjustment for childhood cognitive ability, education, and socio-economic position; however, for the immediate word recall test, there was a non-linear association with 25(OH)D after further adjustment for obesity, menopausal status, smoking, alcohol consumption, physical activity and depressive symptoms at age 45 years (P curvature= 0·01). The present study demonstrated that 25(OH)D concentrations were non-linearly associated with immediate word recall in mid-life. A clarification of the level of 25(OH)D concentrations that is most beneficial for predicting better cognitive performance in mid-life is required.
    The British journal of nutrition 10/2013; 111(05):1-11. DOI:10.1017/S0007114513003176 · 3.45 Impact Factor

Publication Stats

6k Citations
989.76 Total Impact Points


  • 2013–2015
    • University of South Australia
      Tarndarnya, South Australia, Australia
  • 2006–2013
    • University College London
      • Institute of Child Health
      Londinium, England, United Kingdom
  • 2004–2013
    • Institute for Child Health Policy (ICHP)
      • MRC Centre of Epidemiology for Child Health
      Колумбия, Tennessee, United States
  • 2012
    • Imperial College London
      • Department of Epidemiology and Biostatistics
      Londinium, England, United Kingdom
  • 2010
    • WWF United Kingdom
      Londinium, England, United Kingdom
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2003–2005
    • University of Bristol
      • School of Social and Community Medicine
      Bristol, England, United Kingdom
  • 2002–2005
    • UK Department of Health
      Londinium, England, United Kingdom
  • 2001
    • Uppsala University
      • Department of Public Health and Caring Sciences
      Uppsala, Uppsala, Sweden
  • 1998–2001
    • University of Tampere
      • Department of Public Health
      Tammerfors, Pirkanmaa, Finland
  • 2000
    • University of Helsinki
      Helsinki, Uusimaa, Finland