Teck Kwang Lim

National University of Singapore, Tumasik, Singapore

Are you Teck Kwang Lim?

Claim your profile

Publications (28)110.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC-MS-based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two-aqueous phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense /stress response and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H(+) -ATPases, ATP-binding cassette transporters (ABC) and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. This article is protected by copyright. All rights reserved.
    Proteomics 09/2014; · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) metastasis is a major cause of mortality worldwide, which may only be controlled with novel methods limiting tumor dissemination and chemoresistance. High Stathmin-1 (STMN1) expression was previously established as a hallmark of CRC progression and predictor of poor survival; however, the mechanism of action is less clear. This work demonstrates that STMN1 silencing arrests tumor disseminative cascades by inhibiting multiple metastatic drivers, and repressing oncogenic and mesenchymal transcription. Using a sensitive iTRAQ labeling proteomic approach that quantified differential abundance of 4562 proteins, targeting STMN1 expression was shown to reinstate the default cellular program of metastatic inhibition, and promote cellular adhesion via amplification of hemi-desmosomal junctions and intermediate filament tethering. Silencing STMN1 also significantly improved chemoresponse to the classical CRC therapeutic agent, 5FU, via a novel Caspase-6 (CASP6)-dependent mechanism. Interestingly, the prometastatic function of STMN1 was independent of p53 but required phosphorylations at S25 or S38; abrogating phosphorylative events may constitute an alternative route to achieving metastatic inhibition. These findings establish STMN1 as a potential target in anti-metastatic therapy, and demonstrate the power of an approach coupling proteomics and transcript analyses in the global assessment of treatment benefits and potential side-effects. Implications: Stathmin-1 is a potential candidate in colorectal cancer therapy that targets simultaneously the twin problems of metastatic spread and chemoresistance.
    Molecular cancer research : MCR. 07/2014;
  • Source
    J. Neo, T. Lim, Q. Lin
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer is currently the third in cancer incidence worldwide and the fourth most common cause of cancer deaths. Mortality in colorectal cancer is often ascribed to liver metastasis. In an effort to elucidate the proteins involved in colorectal cancer liver metastasis, we compared the proteome profiles of the human colon adenocarcinoma cell line HCT-116 with its metastatic derivative E1, using the iTRAQ labelling technology, coupled to 2D-LC and MALDI-TOF/TOF MS. A total of 547 proteins were identified, of which 31 of them were differentially expressed in the E1 cell line. Among these proteins, the differential expressions of TCTP, AKAP12 and DBN1 were validated using western blot. In particular, Drebrin (DBN1), a protein not previously known to be involved in colorectal cancer metastasis, was found to be overexpressed in E1 as compared to HCT-116 cells. The overexpression of DBN1 was further validated using immunohistochemistry on colorectal cancer tissue sections with matched lymph node and liver metastasis tissues. DBN1 is currently believed to be involved in actin cytoskeleton reorganisation and supp26resses actin filament cross-linking and bundling. Since actin reorganisation is an important process for tumour cell migration and invasion, DBN1 may likely have an important role during colorectal cancer metastasis. This article is protected by copyright. All rights reserved.
    Proteomics 03/2014; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug target identification is a critical step towards the understanding of the mechanism of action of a drug, which will help to improve the current therapeutic regime and to expand the drugs therapeutic potential. However, current in vitro affinity chromatography-based and in vivo activity-based protein profiling (ABPP) approaches generally face difficulties discriminating specific drug targets from non-specific ones. Here we describe a novel approach combining isobaric tag for relative and absolute quantitation (iTRAQ) with Clickable ABPP, named ICABPP, to specifically and comprehensively identify the protein targets of andrographolide (Andro), a natural product with known anti-inflammation and anti-cancer effects, in live cancer cells. We identified a spectrum of specific targets of Andro, which furthered our understanding of the mechanism of action of the drug. We found that Andro has a potential novel application as the tumor metastasis inhibitor, which was validated through cell migration and invasion assays. Moreover, we have unveiled the target binding mechanism of Andro with a combination of drug analogue synthesis, protein engineering and mass spectrometry-based approaches and determined the drug-binding sites of two protein targets, NF-kB and actin.
    Molecular &amp Cellular Proteomics 01/2014; · 7.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Palm oil is a highly versatile commodity with wide applications in the food, cosmetics and biofuel industries. Storage oil in the oil palm mesocarp can make up a remarkable 80% of its dry mass, making it the oil crop with the richest oil content in the world. As such, there has been an ongoing interest in understanding the mechanism of oil production in oil palm fruits To identify the proteome changes during oil palm fruit maturation and factors affecting oil yield in oil palm fruits, we examined the proteomic profiles of oil palm mesocarps at 4 developing stages - 12, 16, 18 & 22 weeks after pollination (WAP) - by 8-plex iTRAQ labeling coupled with 2D-LC and MALDI-TOF/TOF MS. It was found that proteins from several important metabolic processes, including starch and sucrose metabolism, glycolysis, pentose phosphate shunt, fatty acid biosynthesis and oxidative phosphorylation, were differentially expressed in a concerted manner. These increases led to an increase in carbon flux and a diversion of resources such as ATP and NADH that are required for lipid biosynthesis. The temporal proteome profiles between the high oil-yielding (HY) and low oil-yielding (LY) fruits also showed significant differences in the levels of proteins involved in the regulation of the TCA cycle and oxidative phosphorylation. In particular, the expression level of the beta subunit of the ATP synthase complex (Complex IV of the electron transport chain) was found to be increased during fruit maturation in high oil-yielders but decreased in the low oil-yielders during the fruit maturation. These results suggested that increased energy supply is necessary for augmented oil yield in the high oil-yielding oil palm trees.
    Journal of Proteome Research 10/2013; · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Keeping continuity with our previous study that revealed direct correlations between CRC metastasis and enhanced CacyBP protein levels, here we attempt to improve our understanding of the mechanisms involved within this enigmatic process. Overexpression of CacyBP (CacyBP-OE) in primary CRC cell and its knock down (CacyBP-KD) in the metastatic CRC cells revealed (through phenotypic studies) the positive impact of the protein on metastasis. Additionally, two individual 4-plex iTRAQ based comparative proteomics experiments were carried out on the CacyBP-OE and CacyBP-KD cells, each with two biological replicates. Mining of proteomics data identified total 279 (63.80% up-regulated and 36.20% down-regulated) proteins to be significantly altered in expression level for the OE set and in the KD set, this number was 328 (48.78% up-regulated and 51.22% down-regulated). Functional implications of these significantly regulated proteins were related to metastatic phenotypes such as cell migration, invasion, adhesion and proliferation. Gene ontology analysis identified integrin signaling as the topmost network regulated within CacyBP-OE. Further detection of caveolar mediated endocytosis in the top hit list correlated this phenomenon with the dissociation of integrins from the focal adhesion complex which are known to provide the traction force for cell movement when transported back to the leading edge. This finding was further supported by the data obtained from CacyBP-KD dataset showing down-regulation of proteins necessary for integrin endocytosis. Furthermore, intracellular calcium levels (known to influence integrin mediated cell migration) were found to be lowered in CacyBP-KD cells indicating decreased cell motility and vice versa for the CacyBP-OE cells. Actin nucleation by ARP-WASP complex, known to promote cell migration, was also identified as one of the top regulated pathways in CacyBP-OE cells. In short, this study presents CacyBP as a promising candidate biomarker for CRC metastasis and also sheds light on the underlying molecular mechanism by which CacyBP promotes CRC metastasis.
    Molecular &amp Cellular Proteomics 03/2013; · 7.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we aim to identify biomarkers for gastric cancer metastasis using a quantitative proteomics approach. The proteins extracted from a panel of 4 gastric cancer cell lines, two derived from primary cancer (AGS, FU97) and two from lymph node metastasis (AZ521, MKN7) were labeled with iTRAQ (8-plex) reagents and analyzed by 2D - LC MALDI-TOF/TOF MS. In total, 641 proteins were identified with at least a 95% confidence. Using cutoff values of >1.5 and <0.67, 19 proteins were found to be up-regulated and 34 were down-regulated in the metastatic versus primary gastric cancer cell lines respectively. Several of these dysregulated proteins, including caldesmon, were verified using Western blotting. It was found that caldesmon expression was decreased in the two metastasis-derived cell lines, and this was confirmed by further analysis of 7 gastric cancer cell lines. Furthermore, immunohistochemical staining of 9 pairs of primary gastric cancer and the matched lymph node metastasis tissue also corroborated this observation. Finally, knockdown of caldesmon using siRNA in AGS and FU97 gastric cancer cells resulted in an increase in cell migration and invasion, while the over-expression of caldesmon in AZ521 cells led to a decrease in cell migration and invasion. This study has thus established the potential role of caldesmon in gastric cancer metastasis, and further functional studies are underway to delineate the underlying mechanism of action of this protein.
    Journal of Proteome Research 12/2012; · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have evaluated the effect of heart extracellular matrix (ECM) on the cardiomyocyte differentiation of mouse embryonic stem cells (ES cells) using de-cellularized heart tissue. Several lines of evidence indicate that ECM plays significant roles in cell proliferation, cell death and differentiation, but role of ECM possessing a 3D structure in differentiation has not been studied in detail. We found that there are substantial differences in the quantitative protein profiles of ECM in SDS-treated heart tissue compared to that of liver tissue, as assessed by iTRAQ™ quantitative proteomics analysis. When mouse ES cells were cultured on thin (60 μm) sections of de-cellularized tissue, the expression of cardiac myosin heavy chain (cMHC) and cardiac troponin I (cTnI) was high in ES cells cultured on heart ECM compared with those cultured on liver ECM. In addition, the protein expression of cMHC and cTnI was detected in cells on heart ECM after 2 weeks, which was not detectable in cells on liver ECM. These results indicate that heart ECM plays a critical role in the cardiomyocyte differentiation of ES cells. We propose that tissue-specific ECM induced cell lineage specification through mechano-transduction mediated by the structure, elasticity and components of ECM.
    Journal of Bioscience and Bioengineering 11/2012; · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Butyrate and its analogues have long been investigated as potential chemotherapeutic agents. Our previous structure-activity relationship studies of butyrate analogues revealed that 4-benzoylbutyrate had comparable in vitro effects to butyrate when used to treat HT29 and HCT116 colorectal cancer cell lines. The aim of this study was to identify potential mechanisms associated with the anti-tumorigenic effects of 4-benzoylbutyrate. In this study, butyrate, 3-hydroxybutyrate and 4-benzoylbutyrate were also investigated for their effects on histone deacetylase (HDAC) activity and histone H4 acetylation in HT29 and HCT116 cells. The biological effects of these analogues on HT29 cells were further investigated using quantitative proteomics to determine the proteins potentially involved in their apoptotic and anti-proliferative effects. Because 3-hydroxybutyrate had minimal to no effect on apoptosis, proliferation or HDAC activity, this analogue was used to identify differentially expressed proteins that were potentially specific to the apoptotic effects of butyrate and/or 4-benzoylbutyrate. Butyrate treatment inhibited HDAC activity and induced H4 acetylation. 4-Benzoylbutyrate inhibited HDAC activity but failed to enhance H4 acetylation. Proteomic analysis revealed 20 proteins whose levels were similarly altered by both butyrate and 4-benzoylbutyrate. Proteins that showed common patterns of differential regulation in the presence of either butyrate or 4-benzoylbutyrate included c-Myc transcriptional targets, proteins involved in ER homeostasis, signal transduction pathways and cell energy metabolism. Although an additional 23 proteins were altered by 4-benzoylbutyrate uniquely, further work is required to understand the mechanisms involved in its apoptotic effects.
    Journal of Proteome Research 10/2012; · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphopeptides play a crucial role in many biological processes and constitute some of the most powerful biomarkers in disease detection. However they are often present in very low concentration, which makes their detection highly challenging. Here, we demonstrate the use of a solution-dispersible graphene-titania platform for the selective extraction of phosphopeptides from peptide mixtures. This is followed by direct analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The efficient charge and energy exchange between graphene and TiO(2) during laser irradiation in SELDI-TOF MS promotes the soft ionization of analytes and affords a detection limit in the attomole range, which is 10(2)-10(5) more sensitive than conventional platforms. The graphene-titania platform can also be used for detecting phosphopeptides in cancer cells (HeLa cells), where it shows high specificity (94%). An expanded library of 967 unique phosphopeptides is detected using significantly reduced loading of extraction matrixes compared to conventional TiO(2) bead-based assays.
    Analytical Chemistry 07/2012; 84(15):6693-700. · 5.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, primitive fetal nucleated red blood cells (FNRBCs) are thought to be as vital for embryonic life as their counterpart, adult red blood cells (adult RBCs) are in later-gestation fetuses and adults. Unlike adult RBCs, the identity and functions of FNRBC proteins are poorly understood owing to a scarcity of FNRBCs for proteomic investigations. The study aimed to investigate membrane proteins of this unique cell type. We present here, the first report on the membrane proteome of human primitive FNRBCs investigated by two-dimensional liquid chromatography coupled with mass-spectrometry (2D-LCMS/MS) and bioinformatics analysis. A total of 273 proteins were identified, of which 133 (48.7%) were membrane proteins. We compared our data with membrane proteins of adult RBCs to identify common, and unique, surface membrane proteins. Twelve plasma membrane proteins with transmembrane domains and eight proteins with transmembrane domains but without known sub-cellular location were identified as unique-to-FNRBCs. Except for the transferrin receptor, all other 19 unique-to-FNRBC membrane proteins have never been described in RBCs. Reverse-transcriptase PCR (RT-PCR) and immunocytochemistry validated the 2D-LCMS/MS data. Our findings provide potential surface antigens for separation of primitive FNRBCs from maternal blood for noninvasive prenatal diagnosis, and to understand the biology of these rare cells.
    Journal of proteomics 07/2012; 75(18):5762-73. · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gonadotropin-releasing hormone (GnRH) regulates the synthesis and secretion of follicle-stimulating hormone (FSH) by stimulating the transcription of Fshβ gene. Our iTRAQ quantitative proteomics result showed that the abundance of α-actinin4 (ACTN4) increased in the nuclei of LβT2 cells upon GnRH induction. Using RNA interference, reverse transcription and real-time PCR, luciferase and transient transfection assays, we proved that ACTN4 is involved in the regulation of mouse Fshβ gene (mFshβ) transcription and its C-terminal calmodulin (CaM)-like domain is crucial for this process. Our study suggests that ACTN4 nuclear translocation mediates GnRH stimulation of mFshβ gene transcription.
    FEBS letters 05/2012; 586(10):1466-71. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer is the second leading cause of cancer deaths worldwide, and currently, there are no clinically relevant biomarkers for gastric cancer diagnosis or prognosis. In this study, we applied a 2D-LC-MS/MS based approach, in combination with iTRAQ labeling, to study the secretomes of the gastric cancer cell lines AGS and MKN7. By performing a comparative analysis between the conditioned media and the whole cell lysates, our workflow allowed us to differentiate the bona fide secreted proteins from the intracellular contaminants within the conditioned media. Ninety proteins were found to have higher abundance in the conditioned media as compared to the whole cell lysates of AGS and MKN7 cells. Using a signal peptide and nonclassical secretion prediction tool and an online exosome database, we demonstrated that up to 92.2% of these 90 proteins can be exported out of the cells by classical or nonclassical secretory pathways. We then performed quantitative comparisons of the secretomes between AGS and MKN7, identifying 43 differentially expressed secreted proteins. Among them, GRN was found to be frequently expressed in gastric tumor tissues, but not in normal gastric epithelia by immunohistochemistry. Sandwich ELISA assay also showed elevation of serum GRN levels in gastric cancer patients, particularly those with early gastric cancer. Receiver operating characteristic (ROC) curves analysis confirmed that serum GRN can provide diagnostic discriminations for gastric cancer patients.
    Journal of Proteome Research 12/2011; 11(3):1759-72. · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study compared the whole cell proteome profiles of two isogenic colorectal cancer (CRC) cell lines (primary SW480 cell line and its lymph node metastatic variant SW620), as an in vitro metastatic model, to gain an insight into the molecular events of CRC metastasis. Using iTRAQ (isobaric tags for relative and absolute quantitation) based shotgun proteomics approach, we identified 1140 unique proteins, out of which 147 were found to be significantly altered in the metastatic cell. Ingenuity pathway analysis with those significantly altered proteins, revealed cellular organization and assembly as the top-ranked altered biological function. Differential expression pattern of 6 candidate proteins were validated by Western blot. Among these, the low expression level of β-catenin combined with the up-regulation of CacyBP (Calcyclin binding Protein), a β-catenin degrading protein, in the metastatic cell provided a rational guide for the downstream functional assays. The relative expression pattern of these two proteins was further validated in three other CRC cells by Western blot and quantitative immunofluorescence studies. Overexpression of CacyBP in three different primary CRC cell lines showed significant reduction in adhesion characteristics as well as cellular β-catenin level as confirmed by our experiments, indicating the possible involvement of CacyBP in CRC metastasis. In short, this study demonstrates successful application of a quantitative proteomics approach to identify novel key players for CRC metastasis, which may serve as biomarkers and/or drug targets to improve CRC therapy.
    Journal of Proteome Research 08/2011; 10(10):4373-87. · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastric juice is the most proximal fluid surrounding the stomach tissue. The analysis of gastric juice protein contents will thus be able to accurately reflect the pathophysiology of the stomach. This biological fluid is also a potential reservoir of secreted biomarkers in higher concentration as compared to the serum. Unlike the rest of the gastrointestinal fluids, there were very few studies reported on gastric juice proteome. To date, the proteins that routinely populate this biofluid are largely unknown. This is partly due to the technical difficulties in processing a sample that contains a collection of other gastrointestinal fluids, especially saliva. In this study, we attempt to profile the protein components of the gastric fluids from chronic gastritis patients using a direct shotgun proteomics approach. These data represent the first report of the proteome of human gastric juice with gastritis background.
    PROTEOMICS - CLINICAL APPLICATIONS 04/2011; 5(3-4):204. · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the transcriptome and proteome of the venom of a cryptic Australian elapid snake Drysdalia coronoides. To probe into the transcriptome, we constructed a partial cDNA library from the venom gland of D. coronoides. The proteome of the venom of D. coronoides was explored by tryptic digestion of the crude venom followed by HPLC separation of the resulting peptides and MALDI-TOF/TOF mass spectrometric analysis. Importantly, the tandem MS data of the tryptic peptides of the venom not only confirmed the predicted protein sequences deduced from the transcriptome, but also added to our knowledge about the venom composition through identification of two more toxin families. Using both the approaches, we were able to identify proteins belonging to eight different snake venom protein superfamilies, namely, three-finger toxins, serine protease inhibitors, cysteine rich secretory proteins, phospholipases A(2), venom nerve growth factors, snake venom metalloproteases, vespryns, and a new family phospholipase B. We also identified three novel proteins belonging to the three-finger toxin superfamily.
    Journal of Proteome Research 02/2011; 10(2):739-50. · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry (MS)-based quantitative proteomics plays important roles in drug discovery. In this chapter, we describe a stable isotope labeling technique which employs 4-plex iTRAQ(™) isobaric reagents coupled with two-dimensional (2-D) liquid chromatography (LC) and MALDI-TOF/TOF MS, for a temporal study of HCT-116 colon carcinoma cells treated with butyrate. Butyrate is a short-chain fatty acid fermentation by-product of fiber that can induce temporal cell maturation, from the early phase of growth arrest, to differentiation, and to the activation of apoptotic cascades. Our quantitative proteomics study uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. Selected protein targets are validated by real-time PCR and western blotting.
    Methods in molecular biology (Clifton, N.J.) 01/2011; 716:207-24. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Golgi-associated bi-lobed structure was previously found to be important for Golgi duplication and cell division in Trypanosoma brucei. To further understand its functions, comparative proteomics was performed on extracted flagellar complexes (including the flagellum and flagellum-associated structures such as the basal bodies and the bi-lobe) and purified flagella to identify new bi-lobe proteins. A leucine-rich repeats containing protein, TbLRRP1, was characterized as a new bi-lobe component. The anterior part of the TbLRRP1-labeled bi-lobe is adjacent to the single Golgi apparatus, and the posterior side is tightly associated with the flagellar pocket collar marked by TbBILBO1. Inducible depletion of TbLRRP1 by RNA interference inhibited duplication of the bi-lobe as well as the adjacent Golgi apparatus and flagellar pocket collar. Formation of a new flagellum attachment zone and subsequent cell division were also inhibited, suggesting a central role of bi-lobe in Golgi, flagellar pocket collar and flagellum attachment zone biogenesis.
    PLoS ONE 03/2010; 5(3):e9660. · 3.53 Impact Factor
  • Journal of Allergy and Clinical Immunology - J ALLERG CLIN IMMUNOL. 01/2009; 123(2).