Silvia Cianci

Sapienza University of Rome, Roma, Latium, Italy

Are you Silvia Cianci?

Claim your profile

Publications (7)29.24 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Dopaminergic D2/D3 agonist quinpirole (QNP) elicits nonregulatory drinking in rats, a model of psychotic polydipsia. Why only a fraction of QNP-treated rats responds to the treatment becoming polydipsic is still unclear. To unveil possible factors contributing to such variability, we analyzed drinking microstructure in saline and QNP-treated rats, the hypothalamic expression of the cocaine and amphetamine regulated transcript (CART), and the monoaminergic turnover in selected brain areas. Rats were daily treated with saline or QNP 0.5 mg/kg, and their 5-h water intake was measured for five consecutive days. The number of bouts and episodes of licking, and their duration, were also measured. Brain CART expression was measured by in situ hybridization and monoamines turnover by HPLC analysis of tissue extracts. Based on the amount of water ingested during the 5-h session, QNP-treated rats were post hoc grouped in polydipsic (PD) and in nonpolydipsic (NPD) rats, and the results compared accordingly. The number of drinking bouts and episodes increased in PD rats, while NPD rats behaved as the controls. CART expression decreased in the arcuate nucleus of the hypothalamus of the PD rats. In contrast, both PD and NPD rats showed a reduction of DA turnover in both ventral tegmental area (VTA) and nucleus accumbens (NAcc). No difference was detected in the turnover of 5HT and NA. Microstructure analysis confirms that QNP acts on the appetitive component of drinking behavior, making it compulsive. CART expression reduction in response to dopaminergic hyperstimulation might sustain excessive drinking in PD rats.
    Psychopharmacology 03/2014; · 4.06 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.
    Journal of Alzheimer's disease: JAD 02/2014; · 4.17 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The anandamide monounsaturated analogue oleoylethanolamide (OEA) acts as satiety signal released from enterocytes upon the ingestion of dietary fats to prolong the interval to the next meal. This effect, which requires intact vagal fibers and intestinal PPAR-alpha receptors, is coupled to the increase of c-fos and oxytocin mRNA expression in neurons of the paraventricular nucleus (PVN) and is prevented by the intracerebroventricular administration of a selective oxytocin antagonist, thus suggesting a necessary role of oxytocinergic neurotransmission in the pro-satiety effect of OEA. By brain microdialysis and immunohistochemistry, in this study we demonstrate that OEA treatment can stimulate oxytocin neurosecretion from the PVN and enhance oxytocin expression at both axonal and somatodendritic levels of hypothalamic neurons. Such effects, which are maximum two hours after OEA administration, support the hypothesis that the satiety-inducing action of OEA is mediated by the activation of oxytocin hypothalamic neurons.
    Peptides 08/2013; · 2.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Agomelatine is a novel antidepressant acting as an MT1/MT2 melatonin receptor agonist/5-HT2C serotonin receptor antagonist. Because of its peculiar pharmacological profile, this drug caters the potential to correct the abnormalities of circadian rhythms associated with mood disorders, including abnormalities of the sleep/wake cycle. Here, we examined the effect of chronic agomelatine treatment on sleep architecture and circadian rhythms of motor activity using the rat model of prenatal restraint stress (PRS) as a putative 'aetiological' model of depression. PRS was delivered to the mothers during the last 10 d of pregnancy. The adult progeny ('PRS rats') showed a reduced duration of slow wave sleep, an increased duration of rapid eye movement (REM) sleep, an increased number of REM sleep events and an increase in motor activity before the beginning of the dark phase of the light/dark cycle. In addition, adult PRS rats showed an increased expression of the transcript of the primary response gene, c-Fos, in the hippocampus just prior to the beginning of the dark phase. All these changes were reversed by a chronic oral treatment with agomelatine (2000 ppm in the diet). The effect of agomelatine on sleep was largely attenuated by treatment with the MT1/MT2 melatonin receptor antagonist, S22153, which caused PRS-like sleep disturbances on its own. These data provide the first evidence that agomelatine corrects sleep architecture and restores circadian homeostasis in a preclinical model of depression and supports the value of agomelatine as a novel antidepressant that resynchronizes circadian rhythms under pathological conditions.
    The International Journal of Neuropsychopharmacology 02/2012; · 5.64 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Deficits in glutamate neurotransmission and mitochondrial functions were detected in the frontal cortex (FC) and hippopcampus (HIPP) of aged 3×Tg-Alzheimer's disease (AD) mice, compared with their wild type littermates (non-Tg). In particular, basal levels of glutamate and vesicular glutamate transporter 1 (VGLUT1) expression were reduced in both areas. Cortical glutamate release responded to K(+) stimulation, whereas no peak release was observed in the HIPP of mutant mice. Synaptosomal-associated protein 25 (SNAP-25), glutamate/aspartate transporter (GLAST), glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1) were reduced in HIPP homogenates, where the adenosine triphosphate (ATP) content was lower. In contrast, glutamate transporter 1 and glial fibrillary acidic protein (GFAP) were found to be higher in the frontal cortex. The respiration rates of complex-I, II, IV, and the membrane potential were reduced in cortical mitochondria, where unaltered proton leak, F(0)F(1)-ATPase activity and ATP content, with increased hydrogen peroxide production (H(2)O(2)), were also observed. In contrast, complex-I respiration rate was significantly increased in hippocampal mitochondria, together with increased proton leak and H(2)O(2) production. Moreover, loss of complex-IV and F(0)F(1)-ATPase activities were observed. These data suggest that impairments of mitochondrial bioenergetics might sustain the failure in the energy-requiring glutamatergic transmission.
    Neurobiology of aging 10/2011; 33(6):1121.e1-12. · 5.94 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Oleoylethanolamide (OEA) is a biologically active lipid amide that is released by small-intestinal enterocytes during the absorption of dietary fat and inhibits feeding by engaging the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Previous studies have shown that the anorexic effects of systemically administered OEA require the activation of sensory afferents of the vagus nerve. The central circuits involved in mediating OEA-induced hypophagia remain unknown. In the present study, we report the results of in situ hybridization and immunohistochemistry experiments in rats and mice, which show that systemic injections of OEA (5-10 mg kg(-1), intraperitoneal) enhance expression of the neuropeptide oxytocin in magnocellular neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. No such effect is observed with other hypothalamic neuropeptides, including vasopressin, thyrotropin-releasing hormone and pro-opiomelanocortin. The increase in oxytocin expression elicited by OEA was absent in mutant PPAR-alpha-null mice. Pharmacological blockade of oxytocin receptors in the brain by intracerebroventricular infusion of the selective oxytocin antagonist, L-368,899, prevented the anorexic effects of OEA. The results suggest that OEA suppresses feeding by activating central oxytocin transmission.
    Journal of Neuroscience 06/2010; 30(24):8096-101. · 6.91 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Oleoylethanolamide (OEA) is a lipid amide produced by enterocytes upon the absorption of dietary fat and participates in the induction of satiety. Through indirect pathways, probably depending on the local activation of peroxisome-proliferator-activated receptor-alpha and involving afferent vagus nerve fibers, OEA signal is transmitted to the brain-stem and the hypothalamus, where it stimulates the release of oxytocin from magnocellular neurons. OEA mechanism might, thus, provide a novel target for the design of therapies controlling appetite.
    Drug Discovery Today Disease Mechanisms 01/2010; 7(3).