Qiu-Ju Xiong

Huazhong University of Science and Technology, Wuhan, Hubei, China

Are you Qiu-Ju Xiong?

Claim your profile

Publications (6)24.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Methionine sulfoxide reductases A (MsrA) has been postulated to act as a catalytic antioxidant system involved in the protection of oxidative stress-induced cell injury. Recently, attention has turned to MsrA in coupling with the pathology of Parkinson's disease, which is closely related to neurotoxins that cause dopaminergic neuron degeneration. Here, we firstly provided evidence that pretreatment with a natural polyphenol resveratrol (RSV) up-regulated the expression of MsrA in human neuroblastoma SH-SY5Y cells. It was also observed that the expression and nuclear translocation of forkhead box group O 3a (FOXO3a), a transcription factor that activates the human MsrA promoter, increased after RSV pretreatment. Nicotinamide , an inhibitor of silent information regulator 1 (SIRT1), prevented RSV-induced elevation of FOXO3a and MsrA expression, indicating that the effect of RSV was mediated by a SIRT1-dependent pathway. RSV preconditioning increased methionine sulfoxide(MetO)-reducing activity in SH-SY5Y cells and enhanced their resistance to neurotoxins, including chloramine-T and 1-methyl-4-phenyl-pyridinium. In addition, the enhancement of cell resistance to neurotoxins caused by RSV preconditioning can be largely prevented by MsrA inhibitor dimethyl sulfoxide. Our findings suggest that treatment with polyphenols such as RSV can be used as a potential regulatory strategy for MsrA expression and function.
    The Journal of nutritional biochemistry 09/2012; · 4.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca(2+)](i) elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway.
    Brain research 07/2012; 1469:164-73. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-sensing ion channels (ASICs) have been reported to play a role in the neuronal dopamine pathway, but the exact role in neurotransmitter release remains elusive. Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line, which can release monoamine neurotransmitters. In this study, the expression of ASICs was identified in SH-SY5Y cells to further explore the role of ASICs in vesicular release stimulated by acid. We gathered evidence that ASICs could be detected in SH-SY5Y cells. In whole cell patch-clamp recording, a rapid decrease in extracellular pH evoked inward currents, which were reversibly inhibited by 100 μM amiloride. The currents were pH dependent, with a pH of half-maximal activation (pH(0.5)) of 6.01 ± 0.04. Furthermore, in calcium imaging and FM 1-43 dye labeling, it was shown that extracellular protons increased intracellular calcium levels and vesicular release in SH-SY5Y cells, which was attenuated by PcTx1 and amiloride. Interestingly, N-type calcium channel blockers inhibited the vesicular release induced by acidification. In conclusion, ASICs are functionally expressed in SH-SY5Y cells and involved in vesicular release stimulated by acidification. N-type calcium channels may be involved in the increase in vesicular release induced by acid. Our results provide a preliminary study on ASICs in SH-SY5Y cells and neurotransmitter release, which helps to further investigate the relationship between ASICs and dopaminergic neurons.
    AJP Cell Physiology 05/2012; 303(4):C376-84. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sinomenine (SN), a bioactive alkaloid, has been utilized clinically to treat rheumatoid arthritis in China. Our preliminary experiments indicated that it could protect PC12 cells from oxygen-glucose deprivation-reperfusion (OGD-R), we thus investigated the possible effects of SN on cerebral ischaemia and the related mechanism. Middle cerebral artery occlusion in rats was used as an animal model of ischaemic stroke in vivo. The mechanisms of the effects of SN were investigated in vitro using whole-cell patch-clamp recording, calcium imaging in PC12 cells and rat cortical neurons subjected to OGD-R. Pretreatment with SN (10 and 30 mg·kg(-1) , i.p.) significantly decreased brain infarction and the overactivation of calcium-mediated events in rats subjected to 2 h ischaemia followed by 24 h reperfusion. Extracellular application of SN inhibited the currents mediated by acid-sensing ion channel 1a and L-type voltage-gated calcium channels, in the rat cultured neurons, in a concentration-dependent manner. These inhibitory effects contribute to the neuroprotection of SN against OGD-R and extracellular acidosis-induced cytotoxicity. More importantly, administration of SN (30 mg·kg(-1) , i.p.) at 1 and 2 h after cerebral ischaemia also decreased brain infarction and improved functional recovery. SN exerts potent protective effects against ischaemic brain injury when administered before ischaemia or even after the injury. The inhibitory effects of SN on acid-sensing ion channel 1a and L-type calcium channels are involved in this neuroprotection.
    British Journal of Pharmacology 05/2011; 164(5):1445-59. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-sensing ion channels (ASICs) extensively exist in both central and peripheral neuronal systems and contribute to many physiological and pathological processes. The protein that interacts with C kinase 1 (PICK1) was cloned as one of the proteins interacting with protein kinase C (PKC) and colocalized with ASIC1 and ASIC2. Here, we used PICK1 knockout (PICK1-KO) C57/BL6 mice together with the whole cell patch clamp, calcium imaging, RT-PCR, Western blot, and immunocytochemistry techniques to explore the possible change in ASICs and the regulatory effects of PKC on ASICs. The results showed that PICK1 played a key role in regulation of ASIC functions. In PICK1-KO mouse cortical neurons, both the amplitude of ASIC currents and elevation of [Ca(2+)](i) mediated by acid were decreased, which were attributable to the decreased expression of ASIC1a and ASIC2a proteins in the plasma membrane. PKC, a partner protein of PICK1, regulated ASIC functions via PICK1. The agonist and antagonist of PKC only altered ASIC currents and acid-induced increase in [Ca(2+)](i) in wild-type, but not in KO mice. In conclusion, our data provided the direct evidence from PICK1-KO mice that a novel target protein, PICK1, would regulate ASIC function and membrane expression in the brain. In addition, PICK1 played the bridge role between PKC and ASICs.
    AJP Cell Physiology 12/2010; 299(6):C1355-62. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are vital structures that support and/or protect neighboring neurons from pathology. Although it is generally accepted that glutamate receptors mediate most astrocyte effects, acid-evoked currents have recently attracted attention for their role in this regard. Here, we identified the existence and characteristics of acid-sensing ion channels (ASICs) and the transient receptor potential vanilloid type 1 (TRPV1) in astrocytes. There were two types of currents recorded under the application of acidic solution (pH 6.0) in cultured rat astrocytes. Transient currents were exhibited by 10% of the astrocytes, and sustained currents were exhibited by the other 90%, consistent with the features of ASIC and TRPV1 currents, respectively. Western blotting and immunofluorescence confirmed the expression of ASIC1, ASIC2a, ASIC3, and TRPV1 in cultured and in situ astrocytes. Unlike the ASICs expressed in neurons, which were mainly distributed in the cell membrane/cytoplasm, most of the ASICs in astrocytes were expressed in the nucleus. TRPV1 was more permeable to Na(+) in cultured astrocytes, which differed from the typical neuronal TRPV1 that was mainly permeable to Ca(2+). This study demonstrates that there are two kinds of acid-evoked currents in rat astrocytes, which may provide a new understanding about the functions of ligand-gated ion channels in astrocytes.
    Glia 09/2010; 58(12):1415-24. · 5.07 Impact Factor