W H M Almirza

Radboud University Nijmegen, Nymegen, Gelderland, Netherlands

Are you W H M Almirza?

Claim your profile

Publications (6)17.36 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal rat kidney (NRK) fibroblasts exhibit growth-dependent changes in electrophysiological properties and intracellular calcium dynamics. The transition from a quiescent state to a density-arrested state results in altered calcium entry characteristics. This coincides with modulation of the expression of the genes encoding the calcium channels Trpc1, Trpc6 and Orai1, and of the intracellular calcium sensor Stim1. In the present study we have used gene selective short hairpin (sh) RNAs against these various genes to investigate their role in (a) capacitative store-operated calcium entry (SOCE); (b) non-capacitative OAG-induced receptor-operated calcium entry (ROCE); and (c) prostaglandin F(2α) (PGF(2α))-induced Ca(2+)-oscillations in NRK fibroblasts. Intracellular calcium measurements revealed that knockdown of the genes encoding Trpc1, Orai1 and Stim1 each caused a significant reduction of SOCE in NRK cells, whereas knockdown of the gene encoding Trpc6 reduced only the OAG-induced ROCE. Furthermore, our data show that knockdown of the genes encoding Trpc1, Orai1 and Stim1, but not Trpc6, substantially reduced the frequency (up to 60%) of PGF(2α)-induced Ca(2+) oscillations in NRK cells. These results indicate that in NRK cells distinct calcium channels control the processes of SOCE, ROCE and PGF(2α)-induced Ca(2+) oscillations.
    Cell calcium 11/2011; 51(1):12-21. DOI:10.1016/j.ceca.2011.10.001 · 4.21 Impact Factor
  • Source
    W. H. Almirza
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the role of inositol 1,4,5-trisphosphate (IP(3))-receptor isoforms in the prostaglandin F(2alpha) (PGF(2alpha))-induced calcium oscillations and pacemaking activity of normal rat kidney (NRK) fibroblasts. Reverse transcription polymerase chain reaction (RT-PCR) studies revealed that NRK fibroblasts express only the IP(3)-receptor subtypes IP(3)R1 and IP(3)R3. Quantitative RT-PCR analysis demonstrated that their expression levels varied as a function of the growth status of NRK cells; NRK cells made quiescent (Q) by serum deprivation expressed significantly higher levels of subtypes 1 and 3 than cells grown to density-arrest (DA). Using Ca(2+)-imaging techniques, we show that the frequency of PGF(2alpha)-induced calcium oscillations in DA-cells is lower than in Q-cells. To study whether these differences in the frequency of calcium oscillations relate to the relative amounts of IP(3)-receptor subtypes expressed by the cells, we knocked down the genes for either IP(3)-receptor subtype by using an shRNA approach. Knockdown of the IP(3)R1 gene significantly decreased the frequency of the PGF(2alpha)-induced calcium oscillations in both Q- and DA-cells. It also reduced the frequency of the repetitive firing of calcium action potentials by DA-cells. In contrast, knockdown of the IP(3)R3 gene caused an increase in the frequency of both processes, suggesting a role for this receptor subtype as an anti-Ca(2+)-oscillatory unit in NRK fibroblasts. Our findings indicate that the reduction in the frequency of PGF(2alpha)-induced calcium oscillations in DA-cells compared with Q-cells results from the reduced expression ratio of IP(3)R1 versus IP(3)R3 receptors in DA-cells. Moreover, these data provide direct evidence that the frequency of IP(3)-dependent calcium oscillations determines the periodicity of action potential firing by density-arrested NRK fibroblasts.
    Cell calcium 06/2010; 47(6):544-53. DOI:10.1016/j.ceca.2010.05.004 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal rat kidney (NRK) fibroblasts have electrophysiological properties and intracellular calcium dynamics that are dependent upon their growth stage. In the present study we show that this differential behavior coincides with a differential calcium entry that can be either capacitative or non-capacitative. Confluent cells made quiescent by serum deprivation, which have a stable membrane potential near -70 mV and do not show spontaneous intracellular calcium oscillations, primarily exhibit the capacitative mechanism for calcium entry, also called store-operated calcium entry (SOCE). When the quiescent cells are grown to density-arrest in the presence of EGF as the sole polypeptide growth factor, these cells characteristically fire spontaneously repetitive calcium action potentials, which propagate throughout the whole monolayer and are accompanied by intracellular calcium transients. These density-arrested cells appear to exhibit in addition to SOCE also receptor-operated calcium entry (ROCE) as a mechanism for calcium entry. Furthermore we show that, in contrast to earlier studies, the employed SOCs and ROCs are permeable for both calcium and strontium ions. We examined the expression of the canonical transient receptor potential channels (Trpcs) that may be involved in SOCE and ROCE. We show that NRK fibroblasts express the genes encoding Trpc1, Trpc5 and Trpc6, and that the levels of their expression are dependent upon the growth stage of the cells. In addition we examined the growth stage dependent expression of the genes encoding Orai1 and Stim1, two proteins that have recently been shown to be involved in SOCE. Our results suggest that the differential expression of Trpc5, Trpc6, Orai1 and Stim1 in quiescent and density-arrested NRK fibroblasts is responsible for the difference in regulation of calcium entry between these cells. Finally, we show that inhibition or potentiation of SOCE and ROCE by pharmacological agents has profound effects on calcium dynamics in NRK fibroblasts.
    Cellular Signalling 02/2010; 22(7):1044-53. DOI:10.1016/j.cellsig.2010.02.007 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: By using an shRNA approach to knockdown the expression of the prostaglandin (PG)-F(2alpha) receptor (FP-R), the role of PGF(2alpha) in the process of phenotypic transformation of normal rat kidney (NRK) fibroblasts has been studied. Our data show that PGF(2alpha) up-regulates Cox-2 expression both at the mRNA and protein level, indicating that activation of FP-R in NRK fibroblasts induces a positive feedback loop in the production PGF(2alpha). Knockdown of FP-R expression fully impaired the ability of PGF(2alpha) to induce a calcium response and subsequent depolarization in NRK cells. However, these cells could still undergo phenotypic transformation when treated with a combination of EGF and retinoic acid, but in contrast to the wild-type cells, this process was not accompanied by a membrane depolarization to -20 mV. Knockdown of FP-R expression also impaired the spontaneous firing of calcium action potentials by density-arrested NRK cells. These data show that a membrane depolarization is not a prerequisite for the acquisition of a transformed phenotype. Furthermore, our data provide the first direct evidence that activity of PGF(2alpha) by putative pacemaker cells underlies the generation of calcium action potentials in NRK monolayers.
    Cellular Signalling 08/2008; 20(11):2022-9. DOI:10.1016/j.cellsig.2008.07.013 · 4.47 Impact Factor

Publication Stats

19 Citations
17.36 Total Impact Points

Institutions

  • 2008–2011
    • Radboud University Nijmegen
      • • Department of Biophysics
      • • Faculty of Science
      Nymegen, Gelderland, Netherlands