Wang-Jun Qin

Peking University, Peping, Beijing, China

Are you Wang-Jun Qin?

Claim your profile

Publications (6)24.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug addiction is a major public health issue, yet the underlying adaptation of neural networks by drugs of abuse is not fully understood. We have previously linked chaperone heat shock protein 70 (Hsp70) to drug-induced adaptations. Focusing on the NAc core and shell, the present study aims to provide further findings for our understanding of the relation between behavioural sensitization to morphine and Hsp70 at transcriptional and functional levels in rats. Firstly, we delineated the characteristics of behavioural sensitization induced by a single morphine exposure (1-10 mg/kg, s.c.). Secondly, Hsp70 protein expression in the NAc core was time- and dose-relatedly induced during the development of behavioural sensitization to a single morphine exposure in rats, and Pearson analysis indicated a positive correlation between behavioural sensitization and Hsp70 expression in NAc core. Thirdly, at the transcriptional level, intra-NAc core injection of the specific heat shock factor-I (HSF-I) inhibitor N-Formyl-3,4-methylenedioxy-benzylidine-γ-butyrolactam (KNK437) suppressed Hsp70 expression and the development of behavioural sensitization, while the HSF-I specific inducer geranylgeranylacetone (GGA) promoted both of them. Interestingly, intra-NAc shell injection of KNK437 or GGA did not affect the development of behavioural sensitization. Finally, both the functional inhibition of Hsp70 ATPase activity by methylene blue (MB), and the antagonism of Hsp70 substrate binding site (SBD) activity by pifithrin-μ (PES) impaired the development of behavioural sensitization when they were microinjected into the NAc core. Taken together, the critical involvement of chaperone Hsp70 in behavioural sensitization to morphine identifies a biological target for long-lasting adaptations with relevance to addiction.
    The International Journal of Neuropsychopharmacology 11/2013; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Alcohol dependence is a complex psychiatric disorder demanding development of novel pharmacotherapies. Because the cyclic adenosine monophosphate (cAMP) signaling cascade has been implicated in mediating behavioral responses to alcohol, key components in this cascade may serve as potential treatment targets. Phosphodiesterase-4 (PDE4), an enzyme that specifically catalyzes the hydrolysis of cAMP, represents a key point in regulating intracellular cAMP levels. Thus, it was of interest to determine whether PDE4 was involved in the regulation of alcohol use and abuse. METHODS: Male Fawn-Hooded (FH/Wjd) rats were tested for 5% (v/v) ethanol (EtOH) and 10% (w/v) sucrose operant oral self-administration following treatment with the selective PDE4 inhibitor rolipram (0.0125, 0.025, or 0.05 mg/kg, subcutaneous [s.c.]); rolipram at higher doses (0.05, 0.1, and 0.2 mg/kg, s.c.) was tested to determine its impact on the intake of EtOH, sucrose, or water using the 2-bottle choice drinking paradigm. Subsequent open-field testing was performed to evaluate the influence of higher doses of rolipram on locomotor activity. RESULTS: Acute administration of rolipram dose-dependently reduced operant self-administration of 5% EtOH, but had no effect on 10% sucrose responding. Time-course assessment revealed significant decreases in EtOH consumption after rolipram (0.1, 0.2 mg/kg) treatment in continuous- and intermittent access to EtOH at 5% or 10%, respectively. Moreover, chronic rolipram treatment time-dependently decreased 5% EtOH consumption and preference during treatment days and after the termination of rolipram administration. Rolipram at the highest doses (0.1 and 0.2 mg/kg) did decrease locomotor activity, but the effect lasted only 10 and 20 minutes, respectively, which did not likely alter long-term EtOH drinking. CONCLUSIONS: These results suggest that PDE4 plays a role in alcohol seeking and consumption behavior. Drugs interfering with PDE4 may be a potential pharmacotherapy for alcohol dependence.
    Alcoholism Clinical and Experimental Research 06/2012; · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: De-novo protein synthesis is required in the development of behavioural sensitization. A prior screening test from our laboratory has implicated heat shock protein 70 (Hsp70) as one of the proteins required in this behavioural plasticity. Thus, this study was designed to extend our understanding of the role of Hsp70 in the development of behavioural sensitization induced by a single morphine exposure in mice. First, by employing transcription inhibitor actinomycin D (AD) and protein synthesis inhibitor cycloheximide (CHX), we identified a protein synthesis-dependent labile phase (within 4 h after the first morphine injection) in the development of behavioural sensitization to a single morphine exposure. Second, Hsp70 protein expression in the nucleus accumbens correlated positively with locomotor responses of sensitized mice and, more importantly, the expression of Hsp70 increased within 1 h after the first morphine injection. Third, AD and CHX both prevented expression of Hsp70 and disrupted the development of the single morphine induced behavioural sensitization, which further implied Hsp70 was highly associated with behavioural sensitization. Finally, the selective Hsp70 inhibitor pifithrin-μ (PES) i.c.v. injected in mice prevented the development of behavioural sensitization and, critically, this inhibitory effect occurred only when PES was given within 1 h after the first morphine injection, which was within the labile phase of the development period. Taken together, we draw the conclusion that Hsp70 is crucially involved in the labile phase of the development of behavioural sensitization induced by a single morphine exposure, probably functioning as a molecular chaperone.
    The International Journal of Neuropsychopharmacology 05/2012; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral sensitization to a single morphine injection is a unique model to study the neuroanatomical substrates of long-lasting behavioral plasticity associated with opioid reward and abuse. Earlier observations have demonstrated that septal nuclei are critically involved in the processes of reward, learning and memory. In the present study, we investigated the effects of septal nuclei lesions on behavioral sensitization to a single morphine injection, morphine induced conditioned place preference and antinociception in rats. Behavioral sensitization was established by a single injection of 3-30 mg/kg morphine in rats. Bilateral electrical lesions of septal nuclei were carried out 7 days before morphine pretreatment. Acute morphine injection induced hyperactivity in the non-surgery control, sham surgery and septal nuclei-lesioned rats. Seven days later, the challenge injection with 3mg/kg morphine induced significant behavioral sensitization in rats with no surgery and sham surgery, but failed to induce behavioral sensitization in septal nuclei-lesioned rats. When the septal nuclei ablation was carried out after acute morphine pretreatment, the expression of behavioral sensitization was unaffected and not different among rats. In addition, septal nuclei lesions did not impact the rewarding and antinociceptive effects of 10 mg/kg morphine when the rats were tested in a conditioned place preference test and tail-flick test, respectively. Collectively, these results suggest that septal nuclei may be selectively involved in the initiation of behavioral sensitization to morphine, which is separable from the effects of morphine for exerting its rewarding and antinociceptive effects.
    Brain research 03/2012; 1454:90-9. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Behavioural sensitization to a single morphine exposure has been considered to be a long-term form of behavioural plasticity associated with opioid addiction. Accumulated evidence has shown that histone modification plays a key role in behavioural plasticity. Therefore, this study was designed to investigate whether the histone deacetylase inhibitors sodium butyrate (SB) and valproic acid (VPA) could disrupt behavioural sensitization to a single morphine exposure. Mice were pretreated with a single injection of morphine and elicited subsequent behavioural sensitization by a challenge-dosage of morphine after a 7-day drug-free period. At doses that did not affect the locomotor activity, both SB and VPA inhibited the acute morphine induced hyperactivity and significantly attenuated the development of behavioural sensitization to a single morphine exposure. Furthermore, the combination of SB and VPA at the sub-effective doses could additionally reduce the development of morphine sensitization. Western blot analysis revealed that multiple administration with the effective dose of SB (160 mg/kg, i.p.) or VPA (150 mg/kg, i.p.) in the behavioural experiments induced hyperacetylation of histone H3 in the NAc of mice. Taken together, these findings suggest that histone acetylation may be involved in morphine sensitization.
    Neuroscience Letters 03/2011; 494(2):169-73. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New protein synthesis has been implicated as necessary for long-lasting changes in neuronal function. Behavioural sensitization to a single exposure to addictive drugs is a form of neuroplasticity, but little is known about the importance of new protein synthesis in the underlying mechanism. This study was designed to investigate the effects of the transcription inhibitor actinomycin D (AD) and the protein synthesis inhibitor cycloheximide (CHX) on induction of behavioural sensitization to a single morphine exposure in mice. In combination with behavioural experiments, changes in gene and protein expression in the mouse nucleus accumbens (NAc) were analysed by RT-PCR array and Western blot respectively. Behavioural sensitization was evident in mice pretreated only once with morphine at the doses of 20 and 40 mg/kg, but not 5 and 10 mg/kg. Mice pretreated with morphine (20 mg/kg) and challenged with a lower dose (5 mg/kg) after a period of 4-21 d washout showed sensitized locomotion. At the doses that did not affect locomotion in mice, AD or CHX significantly suppressed hyperactivity induced by acute treatment, but not challenge with morphine, and blocked induction of behavioural sensitization to a single morphine exposure in a dose-related manner. The results from RT-PCR array and Western blot indicated that the changes of Hsp70 expression in the NAc of mice were associated with behavioural sensitization induced by a single morphine exposure. Together, these findings suggest that induction of behavioural sensitization to a single morphine exposure requires new protein synthesis, potentially involving Hsp70 expression in the NAc of mice.
    The International Journal of Neuropsychopharmacology 02/2011; 14(1):107-21. · 5.64 Impact Factor