Are you Corey R Quackenbush?

Claim your profile

Publications (6)34.61 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Haloperidol is an efficacious antipsychotic drug that has serious, unpredictable motor side effects that limit its utility and cause non-compliance in many patients. Using a drug-placebo diallel of the eight founder strains of the Collaborative Cross and their F1 hybrids, we characterized aggregate effects of genetics, sex, parent-of-origin and their combinations on haloperidol response. Treating matched pairs of both sexes with drug or placebo, we measured changes in the following: open field activity; inclined screen rigidity; orofacial movements; pre-pulse inhibition of the acoustic startle response; plasma and brain drug level measurements; and body weight. To understand the genetic architecture of haloperidol response we introduce new statistical methodology linking heritable variation with causal effect of drug treatment. Our new estimators, Difference-of-Models and Multiple Impute Matched Pairs, are motivated by the Neyman-Rubin potential outcomes framework and extend our existing Bayesian hierarchical model for the diallel (Lenarcic et al, 2012). Drug-induced rigidity after chronic treatment was affected by mainly additive genetics and parent-of-origin effects (accounting for 28% and 14.8% of the variance), with NZO/HILtJ and 129S1/SvlmJ contributions tending to increase this side-effect. Locomotor activity after acute treatment, by contrast, was more affected by strain-specific inbreeding (12.8%). In addition to drug response phenotypes, we examined diallel effects on behavior before treatment and found not only effects of additive genetics (10.2%-53.2%) but also strong effects of epistasis (10.64%-25.2%). In particular, pre-pulse inhibition showed additivity and epistasis in about equal proportion (26.1% and 23.7%); there was evidence of non-reciprocal epistasis in pre-treatment activity and rigidity; and we estimated a range of effects on body weight that replicate those found in our previous work. Our results provide the first quantitative description of the genetic architecture of haloperidol response in mice, and indicate that additive, dominance-like inbreeding, and parent-of-origin effects contribute strongly to treatment effect heterogeneity for this drug.
    Genetics 11/2013; · 4.39 Impact Factor
  • Source
    Molecular psychiatry 12/2012; · 15.05 Impact Factor
  • Source
    Genetics 02/2012; 190(2):389-402. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tardive dyskinesia (TD) is a debilitating, unpredictable, and often irreversible side effect resulting from chronic treatment with typical antipsychotic agents such as haloperidol. TD is characterized by repetitive, involuntary, purposeless movements primarily of the orofacial region. In order to investigate genetic susceptibility to TD, we used a validated mouse model for a systems genetics analysis geared toward detecting genetic predictors of TD in human patients. Phenotypic data from 27 inbred strains chronically treated with haloperidol and phenotyped for vacuous chewing movements were subject to a comprehensive genomic analysis involving 426,493 SNPs, 4,047 CNVs, brain gene expression, along with gene network and bioinformatic analysis. Our results identified ~50 genes that we expect to have high prior probabilities for association with haloperidol-induced TD, most of which have never been tested for association with human TD. Among our top candidates were genes regulating the development of brain motor control regions (Zic4 and Nkx6-1), glutamate receptors (Grin1 and Grin2a), and an indirect target of haloperidol (Drd1a) that has not been studied as well as the direct target, Drd2.
    Mammalian Genome 12/2011; 23(5-6):322-35. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacogenomics is yet to fulfill its promise of manifestly altering clinical medicine. As one example, a predictive test for tardive dyskinesia (TD) (an adverse drug reaction consequent to antipsychotic exposure) could greatly improve the clinical treatment of schizophrenia but human studies are equivocal. A complementary approach is the mouse-then-human design in which a valid mouse model is used to identify susceptibility loci, which are subsequently tested in human samples. We used inbred mouse strains from the Mouse Phenome Project to estimate the heritability of haloperidol-induced activity and orofacial phenotypes. In all, 159 mice from 27 inbred strains were chronically treated with haloperidol (3 mg kg(-1) per day via subdermal slow-release pellets) and monitored for the development of vacuous chewing movements (VCMs; the mouse analog of TD) and other movement phenotypes derived from open-field activity and the inclined screen test. The test battery was assessed at 0, 30, 60, 90 and 120 days in relation to haloperidol exposure. As expected, haloperidol caused marked changes in VCMs, activity in the open field and extrapyramidal symptoms (EPS). Unexpectedly, factor analysis demonstrated that these measures were imprecise assessments of a latent construct rather than discrete constructs. The heritability of a composite phenotype was ∼0.9 after incorporation of the longitudinal nature of the design. Murine VCMs are a face valid animal model of antipsychotic-induced TD, and heritability estimates from this study support the feasibility of mapping of susceptibility loci for VCMs.
    The Pharmacogenomics Journal 11/2010; 12(2):147-55. · 5.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A promoter polymorphism in the serotonin transporter gene has been widely studied in neuropsychiatry. We genotyped the 5-HTTLPR/rs25531 triallelic polymorphism in 728 schizophrenia cases from the CATIE study and 724 control subjects. In a logistic regression with case/control status as dependent variable and 7 ancestry-informative principal components as covariates, the effect of 5-HTTLPR/rs25531 composite genotype was not significant (odds ratio = 1.008, 95% CI 0.868-1.172, P = 0.91). In cases only, 5-HTTLPR/rs25531 was not associated with neurocognition (summary neurocognitive index P = 0.21, working memory P = 0.32) or symptomatology (PANSS positive P = 0.67 and negative symptoms P = 0.46). We were unable to identify association of the triallelic 5-HTTLPR with schizophrenia, neurocognition, or core psychotic symptoms even at levels of significance unadjusted for multiple comparisons.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 03/2010; 153B(5):1115-7. · 3.23 Impact Factor