Zunyao Wang

Nanjing University, Nan-ching, Jiangsu Sheng, China

Are you Zunyao Wang?

Claim your profile

Publications (53)83.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The CNTs-COOH promoted indigo decolorization in ozonation process.•The special nanostructure and –COOH groups favored the catalytic reaction.•The presence of CNTs-COOH leads to a higher mineralization degree.•Four intermediates were revealed by LC-MS technique and FED calculations.•The reaction solution became harmless after 20 min of ozonation.
    Water Research. 01/2015; 68.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely applied in numerous chemical technologies. Its increasing production and utilization will inevitably lead to the problem of waste disposal, with incineration as an important method. However, toxicity data of its combustion products on aquatic organisms have been seldom reported. The present study was therefore conducted to investigate the antioxidant response and Na(+), K(+)-ATPase activity in liver of Carassius auratus exposed to different combustion products of N117 for 5, 15, and 30 days. The concentrations of fluorine ion (F(-)) in the aquaria among the exposure durations were analyzed using the ion chromatography system. The results showed that these treatments have the capability to induce oxidative stress and suppress Na(+), K(+)-ATPase activity, as indicated by some significant alterations on these measured toxicity end-points in fish liver. According to the integrated biomarker response (IBR) index, the toxicity intensity of these experimental treatments was tentatively ranked. Taken together, these observations provided some preliminary data on the potential toxicity of the combustion products of N117 on aquatic organisms and could fill the information gaps in the toxicity database of the current-use PEM.
    Environmental science and pollution research international. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the toxic effects of the oral exposure of 2-hydroxylated dioxin (2-HODD) in ICR male mice were examined. The mice were administered different doses (0.2, 2.0 and 20.0 mg/kg) of 2-HODD. After 14 days of exposure, the oxidative stress (OS) indicator levels and the essential metal concentrations in the mouse livers were determined. The results showed that the superoxide dismutase (SOD) and the glutathione peroxidase (GPx) activities were increased in the 0.2 mg/kg group, whereas they were significantly decreased in the 2.0 and 20.0 mg/kg groups. Decreases in the catalase (CAT) activity and the glutathione (GSH) levels, accompanied by increases in the malondialdehyde (MDA) contents, were recorded in all of the 2-HODD-treated groups. The hepatic iron, copper and zinc levels increased in all of the 2-HODD-treated groups. The histological examination of the livers demonstrated swollen cells and inflammation. Dose-dependent changes in both the OS indicators and the hepatic metal levels were observed. In conclusion, a single low dose of 2-HODD significantly perturbed the hepatic OS status and metals homeostasis in the mice.
    Environmental Toxicology and Pharmacology. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polychlorinated diphenyl sulfides (PCDPSs) are dioxin-like compounds that could induce various adverse effects to organisms. However, little is known about the occurrence of PCDPSs in the riverine environment. In the present study, the concentrations of twenty-one types of PCDPSs in the surface sediments and in surface water from the Nanjing section of the Yangtze River were examined. A total of nineteen types of PCDPSs were detected and ∑PCDPSs concentrations in surface sediment and surface water ranged from 0.10 to 6.89 ng/g and 0.17 to 2.03 ng/L, respectively. The 2,2',4,4',5-penta-CDPS was the dominant congener in sediment (19.9%) and 2,2',3,3'-tetra-CDPS was the most abundant congener in water (12.2%). The tetra-CDPSs were the dominant congeners both in sediment and in water. Compared with sediment, the percentage of lower chlorinated PCDPSs in water increased distinctly. Source analysis revealed that the PCDPSs in the sediment and in the water mainly came from chemical wastewater rather than domestic sewage. There was a significant linear correlation between ∑PCDPS concentrations and sediment TOC contents, while no linear correlation existed between ∑PCDPS concentrations and water DOC contents. This study demonstrated the prevalent contamination by PCDPSs in sediments and in water from the Nanjing section of the Yangtze River.
    Environmental science & technology. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diphenyl ether and its derivatives are widely used in the industry of spices, dyes, agrochemicals, and pharmaceuticals. Following the previous study, we selected 4,4'-dihydroxydiphenyl ether, 4,4'-difluorodiphenyl ether, 4,4'-dichlorodiphenyl ether, and 4,4'-dibromodiphenyl ether as research objects. The LC50 (96 h) values for these compounds in adult zebrafish were determined with the acute test. Also, developmental toxicities of the four substances to zebrafish embryos were observed at 24, 48, 72, and 96 hpf. All the LC50 (96 h) values of these compounds were between 1 and 10 mg/L, suggesting that they all had moderate toxicity to adult zebrafish. The embryonic test demonstrated that with increasing doses, 4,4'-dihydroxydiphenyl ether decreased the hatching rate, while 4,4'-difluorodiphenyl ether, 4,4'-dichlorodiphenyl ether, and 4,4'-dibromodiphenyl ether delayed the hatching time but had little effect on final hatchability at 96 hpf. All of these compounds inhibited larval growth, especially 4,4'-dihydroxydiphenyl ether. Exposure to these chemicals induced embryo yolk sac and pericardial edema. Spine deformation was visible in hatched larvae after 96 hpf 4,4'-dihydroxydiphenyl ether exposure, while tail curvature was observed for the halogenated compounds. The overall results indicated that 4,4'-dihydroxydiphenyl ether, 4,4'-difluorodiphenyl ether, 4,4'-dichlorodiphenyl ether, and 4,4'-dibromodiphenyl ether all had significant toxicity on adult and embryonic zebrafish.
    Environmental Science and Pollution Research 07/2014; · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acute toxicity of lead was examined for Daphnia magna in waters with different pH values (5.0, 6.0, 7.0, 8.0 and 9.0) and different concentrations (0.01, 0.10, 0.50 and 1.00mg/L) of hydroxyl-functionalized multi-walled carbon nanotubes (OH-MWCNTs). The results indicated that pH values could affect the toxicity of lead. With pH values increasing from 5.0 to 9.0, the 24h-LC50 of Pb(II) increased from 0.784 to 9.473mg/L, suggesting that the toxicity of Pb(II) was dramatically decreased. Although OH-MWCNTs almost caused no lethal effect to D. magna at the studied four concentrations, the combination of OH-MWCNTs and Pb(II) could cause more serious toxic effects to D. magna than Pb(II) alone. This study indicated that the synergistic effect caused by CNTs and lead could not be neglected.
    Environmental toxicology and pharmacology. 06/2014; 38(1):199-204.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1mg/L Cd, 0.5mg/L OH-MWCNTs, or 0.1mg/L Cd+0.5mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill>liver>muscle at 3 days and liver>gill>muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd+OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations.
    Journal of hazardous materials. 04/2014; 275C:89-98.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mercury (Hg) compounds are widely distributed toxic environmental and industrial pollutants and they may bring danger to growth and development of aquatic organisms. The distribution of Hg species in the 3 percent NaCl solution was calculated using the chemical equilibrium model Visual MINTEQ, which demonstrated that Hg was mainly complexed by chlorides in the pH range 5.0-9.0 and the proportions of HgCl4(2-), HgCl3(-) and HgCl2(aq) reached to 95 percent of total Hg. Then the effects of cations (Ca(2+), Mg(2+), K(+) and H(+)), anions (HCO3(-), NO3(-), SO4(2-) and HPO4(2-)) and complexing agents (ethylene diamine tetraacetic acid (EDTA) and dissolved organic matter (DOM)) on Hg toxicity to Photobacterium phosphoreum were evaluated in standardized 15min acute toxicity tests. The significant increase of 6.3-fold in EC50 data with increasing pH was observed over the tested pH range of 5.0-8.0, which suggested the possible competition between hydroxyl and the negatively charged chloro-complex. By contrast, it was found that major cations (Ca(2+), Mg(2+) and K(+)) have little effect on Hg toxicity to P. phosphoreum. An interesting finding was that the addition of HPO4(2-) significantly increased Hg toxicity, which may imply that the addition of phosphate increased the soluble Hg-chloro complex species. Additions of complexing agents (EDTA and DOM) into the exposure water increased Hg bioavailability via complexation of Hg. Finally, a model which incorporated the effect of pH, HPO4(2-), HCO3(-), SO4(2-) and DOM on Hg toxicity was developed to predict acute Hg toxicity for P. phosphoreum, which may be a useful tool in setting realistic water quality criteria for different types of water.
    Ecotoxicology and Environmental Safety 04/2014; 104C:231-238. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laboratory experiments were performed to determine the antioxidant responses to nine phthalates (PAEs) in the liver of the goldfish Carassius auratus. The fish were injected with 10 mg/kg body weight of each PAE for 1 day and 4, 8, and 15 days. The potential biotoxicity of the PAEs were examined using the antioxidase and lipid peroxide indices. We determined that the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels displayed different trends following prolonged treatment, suggesting that metabolism generated either less toxic or more active substances. Based on the intensity of enzymes inhibition, MDA content, and the calculated integrated biomarker response (IBR), the toxicity order was determined as follows: dibutyl phthalate (DBP) > diethyl phthalate (DEP) > diisodecyl phthalate (DIDP) > diphenyl phthalate (DPP) > butyl benzyl phthalate (BBP) > diallyl phthalate (DAP) > dicyclohexyl phthalate (DCHP) > dimethyl phthalate (DMP) > di(2-ethylhexyl) phthalate (DEHP). In particular, DBP, which exhibited significant inhibition of enzyme activity and the greatest decrease in MDA content, may be a highly toxic contaminant. Furthermore, our results suggest that the IBR may be a general marker of pollution. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014.
    Environmental Toxicology 03/2014; · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, laboratory experiments were conducted to investigate the combined effect of zinc and pH on metal accumulation and oxidative stress biomarkers in Carassius auratus. Fish were exposed to 0.1 and 1.0mg Zn/L at three pH values (5.0, 7.25, 9.0) for 3, 12, and 30d. After each exposure, the contents of three trace elements (Zn, Fe and Cu) were determined in liver. Generally, longer exposure to zinc (12d and 30d) increased hepatic Zn and Cu deposition, but decreased Fe content. Increasing accumulation of Zn in the tissue was also observed with increasing zinc concentration in the exposure medium. Moreover, hepatic antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), together with the level of glutathione (GSH) were measured to evaluate the oxidative stress status. The decreases in the four measured biochemical parameters after 3d exposure might reflect the failure of the antioxidant defense system in neutralizing the ROS generated during the metabolic process, while the recovery of the antioxidants at days 12 and 30 suggested a possible shift toward a detoxification mechanism. With regard to the influence of pH on zinc toxicity, the general observation was that the living environment became more stressful when the water conditions changed from an acidic state toward a near-neutral or alkaline state.
    Aquatic toxicology (Amsterdam, Netherlands) 02/2014; 150C:9-16. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Imidazolium bromide ionic liquids such as 1-alkyl-3-methylimidazolium bromides ([AMIm]Br) and 1-alkyl-2,3-dimethylimidazolium bromides ([AMMIm]Br) are common-use organic salts. However, data on comparative toxicological effects of these ILs are lacking for fish. In this study, a combined experimental and theoretical approach was applied to compare and analyze the effects of these ILs on biochemical biomarkers in liver of Carassius auratus treated with different concentrations (2 and 20 mg/L) for 3 and 16 d. Changes in the activities of superoxide dismutase, catalase, glutathione peroxidase, and in the levels of reduced glutathione and malondialdehyde were detected, indicating that these ILs exhibit potential biotoxicity. The integrated biomarker response (IBR) index suggested that 1-hexyl-3-methylimidazolium bromide ([HMIm]Br), 1-octyl-3-methylimidazolium bromide ([OMIm]Br), 1-hexyl-2,3-dimethylimidazolium bromide ([HMMIm]Br), and 1-octyl-2,3-dimethylimidazolium bromide ([OMMIm]Br) showed the highest biotoxicity under different concentrations or exposure time, while 1-ethyl-3-methylimidazolium bromide ([EMIm]Br) always showed the least stressful power towards the test organism. Quantum chemical calculations (electronic parameters, frontier molecular orbitals, and Wiberg bond order) were also conducted to interpret the experimental results. Notably, some descriptors were correlated with the toxicity order. In addition, theoretical calculations provided some valuable information on metabolic pathways of these ILs, which may help to get better understanding on their environmental behavior and fate. In general, the toxicological determination and analysis of these ILs were performed with a combined experimental and theoretical method, which may contribute to the future ecotoxicological studies.
    Ecotoxicology and Environmental Safety 01/2014; 102:187–195. · 2.20 Impact Factor
  • Hui Liu, Hongxia Liu, Ping Sun, Zunyao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The bioconcentration factors (BCFs) of 58 polychlorinated biphenyls (PCBs) were modeled by quantitative structure–activity relationship (QSAR) using density functional theory (DFT), the position of Cl substitution (PCS) and comparative molecular field analysis (CoMFA) methods. All the models were robust and predictive, and especially, the best CoMFA model was significant with a correlation coefficient (R2) of 0.926, a cross-validation correlation coefficient (Q2) of 0.821 and a root mean square error estimated (RMSE) of 0.235. The results indicate that the electrostatic descriptors play a more significant role in BCFs of PCBs. Additionally, a test set was used to compare the predictive ability of our models to others, and results show that our CoMFA model present the lowest RMSE. Thus, the models obtain in this work can be used to predict the BCFs of remaining 152 PCBs without available experimental values.
    Chemosphere 01/2014; 114:101–105. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations.
    Journal of Hazardous Materials. 01/2014; 275:89–98.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mercury (Hg) compounds are widely distributed toxic environmental and industrial pollutants and they may bring danger to growth and development of aquatic organisms. The distribution of Hg species in the 3 percent NaCl solution was calculated using the chemical equilibrium model Visual MINTEQ, which demonstrated that Hg was mainly complexed by chlorides in the pH range 5.0–9.0 and the proportions of HgCl42−, HgCl3− and HgCl2(aq) reached to 95 percent of total Hg. Then the effects of cations (Ca2+, Mg2+, K+ and H+), anions (HCO3−, NO3−, SO42− and HPO42−) and complexing agents (ethylene diamine tetraacetic acid (EDTA) and dissolved organic matter (DOM)) on Hg toxicity to Photobacterium phosphoreum were evaluated in standardized 15 min acute toxicity tests. The significant increase of 6.3-fold in EC50 data with increasing pH was observed over the tested pH range of 5.0–8.0, which suggested the possible competition between hydroxyl and the negatively charged chloro-complex. By contrast, it was found that major cations (Ca2+, Mg2+ and K+) have little effect on Hg toxicity to P. phosphoreum. An interesting finding was that the addition of HPO42− significantly increased Hg toxicity, which may imply that the addition of phosphate increased the soluble Hg–chloro complex species. Additions of complexing agents (EDTA and DOM) into the exposure water increased Hg bioavailability via complexation of Hg. Finally, a model which incorporated the effect of pH, HPO42−, HCO3−, SO42− and DOM on Hg toxicity was developed to predict acute Hg toxicity for P. phosphoreum, which may be a useful tool in setting realistic water quality criteria for different types of water.
    Ecotoxicology and Environmental Safety 01/2014; 104:231–238. · 2.20 Impact Factor
  • Hongxia Liu, Jiaqi Shi, Hui Liu, Zunyao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The octanol/air partition coefficient (KOA) is a key physicochemical parameter for describing the partition of organic pollutants between air and environment organic phase. The development of appropriate method to estimate KOA is of great importance. In the present study, the steric, electrostatic, hydrophobic, hydrogen bond donor and acceptor descriptors were computed by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). On the basis of these parameters, the statistically quantitative structure–property relationship (QSPR) models for logKOA of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) congeners were developed using partial least-squares (PLS) analysis, of which the R2 is about 0.980, 0.952 respectively. The electrostatic field was found to be main factors governing the logKOA. The results of validation indicate the models of this study exhibit optimum stability, and thus it is feasible to predict logKOA.
    Atmospheric Environment 10/2013; · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study examined the effects of oral exposure of 4,4'-dibromodiphenyl ether (BDE-15), 4,4'-dichlorodiphenyl ether (CDE-15), and 4,4'-dihydroxydiphenyl ether (HODE-15) on hepatic oxidative stress (OS) and metal status in Institute of Cancer Research (ICR) male mice. Furthermore, the role of vitamin E in ameliorating potential OS caused by BDE-15, CDE-15, and HODE-15 was investigated. Three groups of mice were exposed to 1.20 mg/kg(body weight)/day of each of the three toxicants for 28 days. Results showed that none of the three toxicants altered growth rates of mice, but significantly increased (P < 0.05) relative liver weights and decreased relative kidney weights. Pathological changes including cell swelling, inflammation and vacuolization, and hepatocellular hypertrophy in livers were observed. Significant decreases (P < 0.05 and P < 0.01) in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activity, and glutathione (GSH) levels, together with increases in malondialdehyde (MDA) content were recorded in all toxicant-treated groups. Hepatic copper levels increased in all toxicant-treated groups. Hepatic zinc levels decreased in the liver of BDE-15-treated mice, whereas they increased in the livers of CDE-15-treated and HODE-15-treated mice. In conclusion, daily exposure to the three toxicants perturbed metal homeostasis and increased OS in mouse liver. Experimental data indicated the hepatic oxidative toxicity of the three toxicants followed the order BDE-15 < HODE-15 < CDE-15. Moreover, the study proved that daily supplementation of 50 mg/kg vitamin E is effective to ameliorate the hepatic OS status and metal disturbance in mice.
    Environmental Science and Pollution Research 09/2013; · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd) compounds are widely distributed toxic environmental and industrial pollutants, and they may bring danger to growth and development of aquatic organisms. The effects of Ca(2+) (as CaCl2), Mg(2+) (as MgSO4), K(+) (as KCl), pH and complexants (EDTA, the commercial DOM, and three homemade DOMs) on Cd toxicity to Photobacterium phosphoreum were evaluated in standardized 15min acute toxicity tests. Increases in Ca(2+) concentration resulted in higher EC50 values, indicating the competition between the two ions for uptake sites at the biotic ligand. Increased waterborne Mg(2+) also reduced Cd toxicity, but to a slightly lesser degree compared with Ca(2+). The overall decline in EC50 data with increasing K(+) in test solutions suggested that Cd toxicity was enhanced at larger K(+) concentration. The toxicity alleviation by H(+) was observed over the tested pH range of 5.0-9.0. Additions of complexing agents into the exposure water reduced Cd bioavailability via complexation of Cd(2+), and complexants from different sources displayed different protective effect. The influence of these toxicity modifying factors was finally incorporated into a model that can predict acute cadmidum toxicity for Photobacterium phosphoreum. After validation with laboratory and natural waters, the developed model could support efforts to improve the ecological relevance of presently applied risk assessment procedures.
    Journal of hazardous materials 08/2013; 262C:288-296. · 4.33 Impact Factor
  • ChemInform 07/2013; 44(31).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Decabromodiphenyl ether (BDE-209) and its commercial alternative decabromodiphenyl ethane (DBDPE) are two structurally similar brominated flame retardants, with evidence of their ubiquitous existence in aquatic ecosystems. The present study was conducted to investigate the hepatic oxidative stress inducing potential of BDE-209, DBDPE, and their mixture in Carassius auratus after exposure to different doses (10, 50 and 100 mg/kg) for 7, 14 and 30 days. Results showed that oxidative stress was evoked evidently for the experimental groups with longer exposure duration, as indicated by significant inhibition in the antioxidant enzymes activities and decrease in the reduced glutathione level, as well as simultaneous elevation of lipid peroxidation level measured by malondialdehyde content. In addition, it was found that BDE-209 possessed a higher oxidative stress inducing ability than DBDPE. Considering the more pronounced antioxidant responses in combined exposure, the interaction of BDE-209 and DBDPE was presumed to be additive action.
    Ecotoxicology 07/2013; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Decabromodiphenyl ether (BDE-209) and several non-polybrominated diphenyl ether (PBDE) brominated flame retardants (BFRs), such as tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB) and pentabromotoluene (PBT), are persistent halogenated contaminants ubiquitously detected in aquatic systems. However, data on comparative toxicological effects of these BFRs are lacking for fish. In this study, a combined experimental and theoretical approach was used to compare and analyze the effects of these BFRs on biochemical biomarkers in liver of Carassius auratus injected intraperitoneally with different doses (10 and 100mg/kg) for 7, 14 and 30 days. Oxidative stress was evoked evidently for the prolonged exposure, represented by the significantly altered indices (superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and malondialdehyde). The integrated biomarker response (IBR) index ranked biotoxicity as: PBT>HBB>HBCD>TBBPA>BDE-209>DBDPE. Quantum chemical calculations (electronic parameters, frontier molecular orbitals, and Wiberg bond order) were performed for theoretical analysis. Notably, some descriptors were correlated with the toxicity order, probably implying the existence of a potential structure-activity relationship when more BFRs were included. Besides, theoretical calculations also provided some valuable information regarding the molecular characteristics and metabolic pathways of these current-use BFRs, which may facilitate the understanding on their environmental behavior and fate. Overall, this study adopted a combined experimental and theoretical method for the toxicological determination and analysis of the BFRs, which may also be considered in future ecotoxicological studies.
    Aquatic toxicology (Amsterdam, Netherlands) 07/2013; 140-141C:314-323. · 3.12 Impact Factor

Publication Stats

91 Citations
83.65 Total Impact Points

Institutions

  • 2004–2014
    • Nanjing University
      • School of Environment
      Nan-ching, Jiangsu Sheng, China
  • 2005–2008
    • Jiaxing University
      Kashing, Zhejiang Sheng, China
    • Guilin Institute of Technology
      Ling-ch’uan, Guangxi Zhuangzu Zizhiqu, China
    • Yancheng Institute of Technology
      Yen-ch’eng-chen, Jiangsu Sheng, China