Carl W Olsen

United States Department of Agriculture, Washington, Washington, D.C., United States

Are you Carl W Olsen?

Claim your profile

Publications (21)35.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde incorporated into apple, carrot, and hibiscus-based edible films against Salmonella Newport in bagged organic leafy greens. The leafy greens tested included organic Romaine and Iceberg lettuce, and mature and baby spinach. Each leafy green sample was washed, dip inoculated with S. Newport (10(7) CFU/mL), and dried. Each sample was put into a Ziploc® bag. Edible films pieces were put into the Ziploc bag and mixed well. The bags were sealed and stored at 4 °C. Samples were taken at days 0, 3, and 7 for enumeration of survivors. On all leafy greens, 3% carvacrol films showed the best bactericidal effects against Salmonella. All 3 types of 3% carvacrol films reduced the Salmonella population by 5 log10 CFU/g at day 0 and 1.5% carvacrol films reduced Salmonella by 1 to 4 log10 CFU/g at day 7. The films with 3% cinnamaldehyde showed 0.5 to 3 log reductions on different leafy greens at day 7. The films with 0.5% and 1.5% cinnamaldehyde and 0.5% carvacrol also showed varied reductions on different types of leafy greens. Edible films were the most effective against Salmonella on Iceberg lettuce. This study demonstrates the potential of edible films incorporated with carvacrol and cinnamaldehyde to inactivate S. Newport on organic leafy greens.
    Journal of Food Science 01/2014; 79(1):M61-6. DOI:10.1111/1750-3841.12318 · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Edible films can be used as wrapping material on food products to reduce surface contamination. The incorporation of antimicrobials into edible films could serve as an additional barrier against pathogenic and spoilage microorganisms that contaminate food surfaces. The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde, incorporated into apple, carrot, and hibiscus-based edible films against Listeria monocytogenes on contaminated ham and bologna. Ham or bologna samples were inoculated with L. monocytogenes and dried for 30 min, then surface wrapped with edible films containing the antimicrobials at various concentrations. The inoculated, film-wrapped samples were stored at 4 °C. Samples were taken at day 0, 3, and 7 for enumeration of surviving L. monocytogenes by plating on appropriate media. Carvacrol films showed better antimicrobial activity than cinnamaldehyde films. Compared to control films without antimicrobials, films with 3% carvacrol induced 1 to 3, 2 to 3, and 2 to 3 log CFU/g reductions on ham and bologna at day 0, 3, and 7, respectively. Corresponding reductions with 1.5% carvacrol were 0.5 to 1, 1 to 1.5, and 1 to 2 logs, respectively. At day 7, films with 3% cinnamaldehyde reduced L. monocytogenes population by 0.5 to 1.5 and 0.5 to 1.0 logs on ham and bologna, respectively. Inactivation by apple films was greater than that by carrot or hibiscus films. Apple films containing 3% carvacrol reduced L. monocytogenes population on ham by 3 logs CFU/g on day 0 which was 1 to 2 logs greater than that by carrot and hibiscus films. Films were more effective on ham than on bologna. The food industry and consumers could use these films to control surface contamination by pathogenic microorganisms. PRACTICAL APPLICATION: Antimicrobial edible, food-compatible film wraps prepared from apples, carrots, and hibiscus calyces can be used by the food industry to inactivate Listeria monocytogenes on widely consumed ready to eat meat products such as bologna and ham. This study provides a scientific basis for large-scale application of edible fruit- and vegetable-based antimicrobial films on foods to improve microbial food safety.
    Journal of Food Science 06/2012; 77(7):M377-82. DOI:10.1111/j.1750-3841.2012.02751.x · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Edible films can be used as wrapping material on food products to reduce surface contamination. The incorporation of antimicrobials into edible films could serve as an additional barrier against pathogenic and spoilage microorganisms that contaminate food surfaces. The objective of this study was to investigate the antimicrobial effects of carvacrol and cinnamaldehyde, incorporated into apple, carrot, and hibiscus‐based edible films against Listeria monocytogenes on contaminated ham and bologna. Ham or bologna samples were inoculated with L. monocytogenes and dried for 30 min, then surface wrapped with edible films containing the antimicrobials at various concentrations. The inoculated, film‐wrapped samples were stored at 4 °C. Samples were taken at day 0, 3, and 7 for enumeration of surviving L. monocytogenes by plating on appropriate media. Carvacrol films showed better antimicrobial activity than cinnamaldehyde films. Compared to control films without antimicrobials, films with 3% carvacrol induced 1 to 3, 2 to 3, and 2 to 3 log CFU/g reductions on ham and bologna at day 0, 3, and 7, respectively. Corresponding reductions with 1.5% carvacrol were 0.5 to 1, 1 to 1.5, and 1 to 2 logs, respectively. At day 7, films with 3% cinnamaldehyde reduced L. monocytogenes population by 0.5 to 1.5 and 0.5 to 1.0 logs on ham and bologna, respectively. Inactivation by apple films was greater than that by carrot or hibiscus films. Apple films containing 3% carvacrol reduced L. monocytogenes population on ham by 3 logs CFU/g on day 0 which was 1 to 2 logs greater than that by carrot and hibiscus films. Films were more effective on ham than on bologna. The food industry and consumers could use these films to control surface contamination by pathogenic microorganisms.Practical Application: Antimicrobial edible, food‐compatible film wraps prepared from apples, carrots, and hibiscus calyces can be used by the food industry to inactivate Listeria monocytogenes on widely consumed ready to eat meat products such as bologna and ham. This study provides a scientific basis for large‐scale application of edible fruit‐ and vegetable‐based antimicrobial films on foods to improve microbial food safety.
    Journal of Food Science 01/2012; 77(7). · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate the gelation, thermal, mechanical, and oxygen permeability properties of different mammalian, warm- and cold-water fish gelatin solutions and films. Mammalian gelatin solutions had the highest gel set temperatures, followed by warm-water fish and then cold-water fish gelatin solutions. These differences were related to concentrations of imino acids present in each gelatin, with mammalian gelatin having the highest and cold-water fish gelatin having the lowest concentrations. Mammalian and warm-water fish gelatin films contained helical structures, whereas cold-water fish gelatin films were amorphous. This was due to the films being dried at room temperature (23 °C), which was below or near the gelation temperatures of mammalian and warm-water fish gelatin solutions and well above the gelation temperature of cold-water fish gelatin solutions. Tensile strength, percent elongation, and puncture deformation were highest in mammalian gelatin films, followed by warm-water fish gelatin film and then by cold-water fish gelatin films. Oxygen permeability values of cold-water fish gelatin films were significantly lower than those for mammalian gelatin films. These differences were most likely due to higher moisture sorption in mammalian gelatin films, leading to higher oxygen diffusivity.
    Journal of Food Science 09/2011; 76(7):E519-24. DOI:10.1111/j.1750-3841.2011.02312.x · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Campylobacter jejuni is the leading cause of bacterial diarrheal illness worldwide. Many strains are now becoming multidrug resistant. Apple-based edible films containing carvacrol and cinnamaldehyde were evaluated for bactericidal activity against antibiotic resistant and susceptible C. jejuni strains on chicken. Retail chicken breast samples inoculated with D28a and H2a (resistant strains) and A24a (a sensitive strain) were wrapped in apple films containing cinnamaldehyde or carvacrol at 0.5%, 1.5%, and 3% concentrations, and then incubated at 4 or 23 °C for 72 h. Immediately after wrapping and at 72 h, samples were plated for enumeration of viable C. jejuni. The antimicrobial films exhibited dose- and temperature-dependent bactericidal activity against all strains. Films with ≥1.5% cinnamaldehyde reduced populations of all strains to below detection at 23 °C at 72 h. At 4 °C with cinnamaldehyde, reductions were variable for all strains, ranging from 0.2 to 2.5 logs and 1.8 to 6.0 logs at 1.5% and 3.0%, respectively. Films with 3% carvacrol reduced populations of A24a and H2a to below detection, and D28a by 2.4 logs at 23 °C and 72 h. A 0.5-log reduction was observed for both A24a and D28a, and 0.9 logs for H2a at 4 °C at 3% carvacrol. Reductions ranged from 1.1 to 1.9 logs and 0.4 to 1.2 logs with 1.5% and 0.5% carvacrol at 23 °C, respectively. The films with cinnamaldehyde were more effective than carvacrol films. Reductions at 23 °C were greater than those at 4 °C. Our results showed that antimicrobial apple films have the potential to reduce C. jejuni on chicken and therefore, the risk of campylobacteriosis. Possible mechanisms of antimicrobial effects are discussed. PRACTICAL APPLICATION:  Apple antimicrobial films could potentially be used in retail food packaging to reduce C. jejuni commonly present on food.
    Journal of Food Science 04/2011; 76(3):M163-8. DOI:10.1111/j.1750-3841.2011.02065.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.
    Journal of Food Science 03/2011; 76(2):M149-55. DOI:10.1111/j.1750-3841.2010.02012.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alaska necessitates drying of the skins before transport to decrease the moisture content, but conventional hot-air drying is expensive. This study evaluated a less energy-intensive technology, the use of desiccants for reducing water weight in pollock skins prior to shipment. To ensure that the functional properties of gelatin obtained from dried pollock skins were not affected during desiccation, gelatins were prepared from each skin-drying treatment and compared with gelatin extracted from air-dried pollock skins. None of the desiccation treatments decreased the gel strength of pollock skin gelatin, nor were there major differences in gelling temperature or viscosity among the gelatin solutions. This suggests that pollock skins can be economically stabilized for transport to a gelatin-processing facility through the use of regenerable desiccants that are already common in the food industry. PRACTICAL APPLICATION: Pollock skins destined for gelatin production can be stabilized using chemical desiccants prior to shipment. The dehydration process does not harm the functional properties of gelatin, such as gel strength, gelling temperature, and viscosity. This research suggests that fish skins can be economically stabilized for transport to a gelatin-processing facility through the use of regenerable desiccants that are already common in the food industry.
    Journal of Food Science 05/2010; 75(4):C317-21. DOI:10.1111/j.1750-3841.2010.01596.x · 1.79 Impact Factor
  • A Sustainable Future: Fish Processing Byproducts; 01/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apple-based edible films containing plant antimicrobials were evaluated for their activity against pathogenic bacteria on meat and poultry products. Salmonella enterica or E. coli O157:H7 (10(7) CFU/g) cultures were surface inoculated on chicken breasts and Listeria monocytogenes (10(6) CFU/g) on ham. The inoculated products were then wrapped with edible films containing 3 concentrations (0.5%, 1.5%, and 3%) of cinnamaldehyde or carvacrol. Following incubation at either 23 or 4 degrees C for 72 h, samples were stomached in buffered peptone water, diluted, and plated for enumeration of survivors. The antimicrobial films exhibited concentration-dependent activities against the pathogens tested. At 23 degrees C on chicken breasts, films with 3% antimicrobials showed the highest reductions (4.3 to 6.8 log CFU/g) of both S. enterica and E. coli O157:H7. Films with 1.5% and 0.5% antimicrobials showed 2.4 to 4.3 and 1.6 to 2.8 log reductions, respectively. At 4 degrees C, carvacrol exhibited greater activity than did cinnamaldehyde. Films with 3%, 1.5%, and 0.5% carvacrol reduced the bacterial populations by about 3, 1.6 to 3, and 0.8 to 1 logs, respectively. Films with 3% and 1.5% cinnamaldehyde induced 1.2 to 2.8 and 1.2 to 1.3 log reductions, respectively. For L. monocytogenes on ham, carvacrol films induced greater reductions than did cinnamaldehyde films at all concentrations tested. In general, the reduction of L. monocytogenes on ham at 23 degrees C was greater than at 4 degrees C. Added antimicrobials had minor effects on physical properties of the films. The results suggest that the food industry and consumers could use these films as wrappings to control surface contamination by foodborne pathogenic microorganisms.
    Journal of Food Science 10/2009; 74(8):M440-5. DOI:10.1111/j.1750-3841.2009.01320.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical properties as well as antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, garlic, and oregano essential oils (EOs) in tomato puree film-forming solutions (TPFFS) formulated into edible films at 0.5% to 3% (w/w) concentrations were investigated in this study. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor-phase diffusion of the antimicrobial from the film to the bacteria. The results indicate that the antimicrobial activities against the 3 pathogens were in the following order: oregano oil > allspice oil > garlic oil. Listeria monocytogenes was less resistant to EO vapors, while E. coli O157:H7 was more resistant to EOs as determined by both overlay and vapor-phase diffusion tests. The presence of plant EO antimicrobials reduced the viscosity of TPFFS at the higher shear rates, but did not affect water vapor permeability of films. EOs increased elongation and darkened the color of films. The results of the present study show that the 3 plant-derived EOs can be used to prepare tomato-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films.
    Journal of Food Science 09/2009; 74(7):M390-7. DOI:10.1111/j.1750-3841.2009.01289.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against L. monocytogenes than against the S. enterica. The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.
    Journal of Food Science 09/2009; 74(7):M372-8. DOI:10.1111/j.1750-3841.2009.01282.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Edible films containing plant antimicrobials are gaining importance as potential treatment to extend product shelf life and reduce risk of pathogen growth on contaminated food surfaces. The main objective of the present study was to evaluate the antimicrobial activities, storage stabilities, and physical-chemical-mechanica1 properties of novel edible films made from tomatoes containing carvacrol, the main constituent of oregano oil. The antimicrobial activities against E. coli O157:H7 and the stability of carvacrol were evaluated during the preparation and storage of tomato-based films made by 2 different casting methods, continuous casting and batch casting. Antimicrobial assays of tomato films indicated that optimum antimicrobial effects occurred with carvacrol levels of approximately 0.75% added to tomato purees before film preparation. HPLC analysis of the films indicated that the carvacrol concentrations and bactericidal effect of the films remained unchanged over the storage period of up to 98 d at 5 and 25 degrees C. Carvacrol addition to the tomato puree used to prepare the films increased water vapor permeability of tomato films. The continuous method for casting of the films appears more suitable for large-scale use than the batch method. This 1st report on tomato-based edible antimicrobial tomato films suggests that these films have the potential to prevent adverse effects of contaminated food and promote human health associated with the consumption of tomatoes.
    Journal of Food Science 10/2008; 73(7):M378-83. DOI:10.1111/j.1750-3841.2008.00892.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antimicrobial activities against Escherichia coli O157:H7 as well as the stability of carvacrol, the main constituent of oregano oil, were evaluated during the preparation and storage of apple-based edible films made by two different casting methods, continuous casting and batch casting. Antimicrobial assays of films and high-performance liquid chromatography (HPLC) analysis of film extracts following storage up to 49 days at 5 and 25 degrees C revealed that (a) optimum antimicrobial effects were apparent with carvacrol levels of approximately 1.0% added to the purees prior to film preparation, (b) carvacrol in the films and film weights remained unchanged over the storage period of up to 7 weeks, and (c) casting methods affected carvacrol concentration, bactericidal activity, physicochemical properties, and colors of the apple films. Carvacrol addition to the purees used to prepare the films reduced water vapor and oxygen permeability of apple films. The results indicate that carvacrol has a dual benefit. It can be used to both impart antimicrobial activities and enhance barrier properties of edible films. The cited observations facilitate relating compositional and physicochemical properties of apple puree films containing volatile plant antimicrobials to their use in foods.
    Journal of Agricultural and Food Chemistry 06/2008; 56(9):3082-8. DOI:10.1021/jf703629s · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanical, barrier and antimicrobial properties of 0.1–0.5% suspensions of the following essential oils (EOs)/oil compounds (OCs) were evaluated against the foodborne pathogen Escherichia coli O157:H7 in alginate–apple puree edible film (AAPEF): oregano oil/carvacrol; cinnamon oil/cinnamaldehyde; and lemongrass oil/citral. The presence of plant essential oils did not significantly affect water vapor and oxygen permeabilities of the films, but did significantly modify tensile properties. Antimicrobial activities of solutions used to prepare edible films (AAPFFS) were also determined. The results obtained demonstrate that carvacrol exhibited the strongest antimicrobial activity against E. coli O157:H7. The data show that the antimicrobial activities were in the following order: carvacrol > oregano oil > citral > lemongrass oil > cinnamaldehyde > cinnamon oil. This study showed that plant-derived essential oils and their constituents could be used to prepare apple-based antimicrobial edible films for food applications.
    Journal of Food Engineering 08/2007; 81(3):634-641. DOI:10.1016/j.jfoodeng.2007.01.007 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transparent glycerol (Gly)-plasticized whey protein isolate (WPI) sheets could be formed from Gly-WPI mixtures using compression molding, demonstrating that such mixtures display flowability and fusion behavior under certain conditions. The effects of glycerol content (GC), molding temperature and molding pressure on the tensile properties of the transparent compression-molded WPI sheets were studied, and the properties were compared to those of films produced using the solution-casting method. Compression-molding temperature and pressure did not significantly affect sheet stiffness (elastic modulus, EM), strength (tensile strength, TS) or extension (% elongation, %E) (p > 0.05). Increasing the GC of compression-molded sheets decreased EM and TS, but had little effect on %E. The values of TS and %E of compression-molded WPI sheets with 40–50% GC were greater than those of solution-cast WPI films with 45% GC. These results indicate the possibility that Gly-WPI mixtures can be extruded into films for formation of edible or biodegradable wraps or heat-sealed pouches.
    Journal of Food Engineering 02/2007; 78(3-78):855-860. DOI:10.1016/j.jfoodeng.2005.12.002 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fish skins are rich in collagen and can be used to produce food-grade gelatin. Films cast from fish-skin gelatins are stable at room temperature and can act as a barrier when applied to foods. Lysozyme is a food-safe, antimicrobial enzyme that can also produce gels and films. When cold-water, fish-skin gelatin is enhanced with lysozyme, the resulting film has antimicrobial properties. The objective of this study was to characterize the effect on strength and barrier properties of lysozyme-enhanced fish-skin gelatin gels and films, and evaluate their activity against potential spoilage bacteria. Solutions containing 6.67% fish-skin gelatin were formulated to contain varying levels of hen-egg-white lysozyme. Gels were evaluated for strength, clarity, and viscoelastic properties. Films were evaluated for water activity, water vapor permeability, and antimicrobial barrier capabilities. Fish-skin gels containing 0.1% and 0.01% lysozyme had pH (4.8) and gelling-temperatures (2.1 • C) similar to lysozyme-free fish-skin gelatin controls. However, gel strength decreased (up to 20%). Turbidities of gels, with or without lysozyme, were comparable at all concentrations. Films cast with gelatin containing lysozyme demonstrated similar water vapor permeabilities and water activities. Lysozyme was still detectable in most fish gelatin films. More antimicrobial activity was retained in films cast with higher lysozyme concentrations and in films where lysozyme was added after the gelatin had been initially heated. These results suggest that fish-skin gelatin gels and films, when formulated with lysozyme, may provide a unique, functional barrier to increase the shelf life of food products.
    Journal of Food Science 06/2006; 71(5). DOI:10.1111/j.1750-3841.2006.00031.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Water vapor permeability of cold- and warm-water fish skin gelatins films was evaluated and compared with different types of mammalian gelatins. Alaskan pollock and salmon gelatins were extracted from frozen skins, others were obtained from commercial sources. Water vapor permeability of gelatin films was determined considering differences on percent relative humidity (%RH) at the film underside. Molecular weight distribution, amino acid composition, gel strength, viscoelastic properties, pH, and clarity were also determined for each gelatin. Water vapor permeability of cold-water fish gelatin films (0.93 gmm/m²hkPa) was significantly lower than warm-water fish and mammalian gelatin films (1.31 and 1.88 gmm/m²hkPa, respectively) at 25 °C, 0/80 %RH through 0.05-mm thickness films. This was related to increased hydrophobicity due to reduced amounts of proline and hydroxyproline in cold-water fish gelatins. As expected, gel strength and gel setting temperatures were lower for cold-water fish gelatin than either warm-water fish gelatins or mammalian gelatins. This study demonstrated significant differences in physical, chemical, and rheological properties between mammalian and fish gelatins. Lower water vapor permeability of fish gelatin films can be useful particularly for applications related to reducing water loss from encapsulated drugs and refrigerated or frozen food systems.
    Journal of Food Science 05/2006; 71(4). DOI:10.1111/j.1750-3841.2006.00016.x · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate the feasibility of using medium and far infrared heating for blanching and dehydration of various fruits and vegetables. The infrared blanching was referred as infrared dry-blanching (IDB) in this study since no water or steam was used. A catalytic infrared blancher/dryer was used to perform the blanching and dehydration functions. For the blanching study, fruits and vegetables, including pears, baby carrots, sweet corn and french fries, were blanched with a radiation energy intensity of 5.7 kW/m2. The pears were cut into 12.7 mm cubes and french fries had cross sections of 12.7 x 12.7 mm. The sweet corn kernels were removed from the cobs before blanching. The whole baby carrots had a diameter of 15 mm. It took 2, 4, 1, and 3.5 min to inactivate the peroxidase in the pear cubes, whole baby carrots, cut corn and french fries, respectively. The IDB also showed a high heating rate. It was concluded that all tested fruits and vegetables were effectively blanched in relatively short times and the products had good appearances. When the pear cubes were further dehydrated to 50% weight reduction with a radiation energy intensity of 2.7 kW/m2 after the blanching, the total time saving of IDB was 43.9% compared to steam blanching followed by heated air drying. The texture and appearance of IDB processed pears appeared to be superior compared to the control samples produced with steam blanching and heated air drying. Therefore, the IDB can be used for performing simultaneous blanching and dehydrations.
  • T H McHugh, C W Olsen, E Senesi
    Advances in Experimental Medicine and Biology 02/2004; 542:289-99. · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Films based on whey protein isolate (WPI) were formed using compression molding. Compression molded films could be formed using 30% to 50% moisture content or glycerol content WPI at 104 °C to 160 °C for 2 min. Films made from water-WPI mixtures were brittle and insoluble and had water-vapor permeability values independent of starting water-WPI mixture moisture content, molding temperature, or molding pressure. Gly-WPI films produced at 104 °C were flexible and partially soluble. Gly-WPI films produced at 140 °C were also flexible but nearly insoluble. Glycerol content and molding temperature and pressure had little effect on water-vapor permeability values of Gly-WPI films over the range of conditions studied.
    Journal of Food Science 07/2003; 68(6):1985 - 1999. DOI:10.1111/j.1365-2621.2003.tb07006.x · 1.79 Impact Factor