Zhen-Hua Chen

City University of Hong Kong, Chiu-lung, Kowloon City, Hong Kong

Are you Zhen-Hua Chen?

Claim your profile

Publications (4)46.54 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arrays of well-aligned AlN nanowires (NWs) with tunable p-type conductivity were synthesized on Si(111) substrates using bis(cyclopentadienyl)magnesium (Cp(2)Mg) vapor as a doping source by chemical vapor deposition. The Mg-doped AlN NWs are single-crystalline and grow along the [001] direction. Gate-voltage-dependent transport measurements on field-effect transistors constructed from individual NWs revealed the transition from n-type conductivity in the undoped AlN NWs to p-type conductivity in the Mg-doped NWs. By adjusting the doping gas flow rate (0-10 sccm), the conductivity of AlN NWs can be tuned over 7 orders of magnitude from (3.8-8.5) × 10(-6) Ω(-1) cm(-1) for the undoped sample to 15.6-24.4 Ω(-1) cm(-1) for the Mg-doped AlN NWs. Hole concentration as high as 4.7 × 10(19) cm(-3) was achieved for the heaviest doping. In addition, the maximum hole mobility (∼6.4 cm(2)/V s) in p-type AlN NWs is much higher than that of Mg-doped AlN films (∼1.0 cm(2)/V s). (2) The realization of p-type AlN NWs with tunable electrical transport properties may open great potential in developing practical nanodevices such as deep-UV light-emitting diodes and photodetectors.
    ACS Nano 05/2011; 5(5):3591-8. · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a systematic investigation on the incorporation of chemical exfoliation graphene sheets (GS) in TiO(2) nanoparticle films via a molecular grafting method for dye-sensitized solar cells (DSSCs). By controlling the oxidation time in the chemical exfoliation process, both high conductivity of reduced GS and good attachment of TiO(2) nanoparticles on the GS were achieved. Uniform GS/TiO(2) composite films with large areas on conductive glass were prepared by electrophoretic deposition, and the incorporation of GS significantly improved the conductivity of the TiO(2) nanoparticle film by more than 2 orders of magnitude. Moreover, the power conversion efficiency for DSSC based on GS/TiO(2) composite films is more than 5 times higher than that based on TiO(2) alone, indicating that the incorporation of GS is an efficient means for enhancing the photovoltaic (PV) performance. The better PV performance of GS/TiO(2) DSSC is also attributed to the better dye loading of GS/TiO(2) film than that of TiO(2) film. The effect of GS content on the PV performances was also investigated. It was found that the power conversion efficiency increased first and then decreased with the increasing of GS concentration due to the decrease in the transmittance at high GS content. Further improvements can be expected by fully optimizing fabrication conditions and device configuration, such as increasing dye loading via thicker films. The present synthetic strategy is expected to lead to a family of composites with designed properties.
    ACS Nano 06/2010; 4(6):3482-8. · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Facile chemical approaches for the controllable synthesis of CuSe, CuInSe2 nanowire, and CuInSe2/CuInS2 core/shell nanocable bundles were developed. Hexagonal CuSe nanowire bundles with lengths up to hundreds of micrometers, consisting of many aligned nanowires with a diameter of about 10-15 nm, were prepared by reacting cubic Cu(2-x)Se nanowire bundles with a sodium citrate solution at room temperature. The CuSe nanowire bundles were then used as self-sacrificial templates for making bundles of tetragonal chalcopyrite CuInSe2 nanowires by reacting with InCl3 via a solvothermal process. Furthermore, bundles of CuInSe2/CuInS2 core/shell nanocables were obtained by adding sulfur to the reaction system, and the shell thickness of the polycrystalline CuInS2 in the nanocables increased with increasing S/Se molar ratios. It was found that the small radius of copper ions allows their fast outward diffusion from the interior to the surface of nanowires to react with sulfur atoms/anions and indium ions to form a CuInS2 shell. Enhanced optical absorption in the vis-NIR region of CuInSe2/CuInS2 core/shell nanocable bundles is demonstrated, which is considered beneficial for applications in optoelectronic devices and solar energy conversion.
    ACS Nano 03/2010; 4(4):1845-50. · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new catalyst seeding method is presented, in which aerosolized catalyst nanoparticles are continuously self-assembled onto amine-terminated silicon substrates in gas phase to realize controllable synthesis of vertically aligned Mg-doped GaN nanorod arrays on n-type Si (111) substrates. The diameter, areal density, and length of GaN nanorods can be controlled by adjusting the size of Au nanoparticles, flowing time of Au nanoparticles, and growth time, respectively. Based on the synthesis of p-type GaN nanorods on n-type Si substrates, p-GaN nanorod/n-Si heterojunction diodes are fabricated, which exhibit well-defined rectifying behavior with a low turn-on voltage of ∼1.0 V and a low leakage current even at a reverse bias up to 10 V. The controllable growth of GaN nanorod arrays and the realization of p-type GaN nanorod/n-type Si heterojunction diodes open up opportunities for low-cost and high-performance optoelectronic devices based on these nanostructured arrays.
    Advanced Functional Materials 11/2008; 18(21). · 10.44 Impact Factor