Youngjoo Sohn

Kyung Hee University, Sŏul, Seoul, South Korea

Are you Youngjoo Sohn?

Claim your profile

Publications (16)49.03 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to examine the usefulness of the conserved block 9 (CB9) to interspecies conserved block (ICB10) region of Plasmodium vivax merozoite surface protein-1 (MSP-1 (ICB910)) as a serodiagnostic tool for understanding malaria transmission.
    Malaria Journal 08/2014; 13(1):311. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax reemerged in the Republic of Korea (ROK) in 1993, and is likely to continue to affect public health. The purpose of this study was to measure levels of anti-P. vivax antibodies using indirect fluorescent antibody test (IFAT) in border areas of ROK, to determine the seroprevalence of malaria (2003-2005) and to plan effective control strategies. Blood samples of the inhabitants in Gimpo-si, Paju-si, and Yeoncheon-gun (Gyeonggi-do), and Cheorwon-gun (Gangwon-do) were collected and kept in Korea Centers for Disease Control and Prevention (KCDC). Out of a total of 1,774 serum samples tested, the overall seropositivity was 0.94% (n=17). The seropositivity was the highest in Paju-si (1.9%, 7/372), followed by Gimpo-si (1.4%, 6/425), Yeoncheon-gun (0.67%, 3/451), and Cheorwon-gun (0.19%, 1/526). The annual parasite incidence (API) in these areas gradually decreased from 2003 to 2005 (1.69, 1.09, and 0.80 in 2003, 2004, and 2005, respectively). The highest API was found in Yeoncheon-gun, followed by Cheorwon-gun, Paju-si, and Gimpo-si. The API ranking in these areas did not change over the 3 years. The seropositivity of Gimpo-si showed a strong linear relationship with the API of 2005 (r=0.9983, P=0.036). Seropositivity data obtained using IFAT may be useful for understanding malaria prevalence of relevant years, predicting future transmission of malaria, and for establishing and evaluating malaria control programs in affected areas.
    The Korean Journal of Parasitology 02/2014; 52(1):1-7. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax re-emerged in 1993. Although the number of infections has been steadily decreasing, it is likely to continue to affect public health until it is eradicated. The aim of this study is to measure anti-circumsporozoite protein (CSP) antibody and compare malaria prevalence. As to understand the prevalence, an epidemiology study has to be conducted in the Republic of Korea. A total of 1,825 and 1,959 blood samples were collected in 2010 and 2011, respectively, from the inhabitants of Ganghwa and Cheorwon counties. The antibody titers of the inhabitants were measured by enzyme-linked immunosorbent assay (ELISA) using recombinant protein purified from Escherichia coli transformed with a CSP gene-inserted pET-28a(+) expression vector. Microscopic examination was performed to identify malaria parasites. The annual parasite incidence (API) in Ganghwa decreased from 4.28 in 2010 to 2.23 in 2011, and that in Cheorwon decreased from 1.88 in 2010 to 1.15 in 2011. The antibody-positive CSP rate in these areas also decreased from 18.14% (331/1825) in 2010 to 15.36% (301/1959) in 2011. Pearson analysis showed a strong correlation between the API and the antibody-positive CSP rate in these areas (r = 1.000, P < 0.01). The intensity of the immune responses of the inhabitants of Cheorwon, as measured by the mean optical density, decreased from 0.9186 +/- 0.0472 in 2010 to 0.7035 +/- 0.0457 in 2011 (P = 0.034), but increased in Ganghwa from 0.7649 +/- 0.0192 in 2010 to 0.8237 +/- 0.1970 in 2011 (P = 0.006). The immune response increased according to age (r = 0.686, P = 0.041). The positive CSP-ELISA rate was closely related to the API in the study areas. This suggests that seroepidemiological studies based on CSP-ELISA may be helpful in estimating the malaria prevalence. Moreover, such studies can be used to establish and evaluate malaria control and eradication programmes in high-risk areas in Korea.
    Malaria Journal 12/2013; 12(1):448. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After the re-emergence of Plasmodium vivax in 1993, a total of 31,254 cases of vivax malaria were reported between 1993--2012 in the Republic of Korea (ROK). The purpose of this study was to review Korea Centers for Disease Control and Prevention records to investigate the transmission of malaria from 2010--2012. Reporting of microscopy-diagnosed cases of malaria is mandatory in the ROK. In this study, all available records of malaria cases and malaria vectors collected from 2010 -- 2012 in Cheorwon County, Gangwon Province and Ganghwa County, Incheon Metropolitan City, were reviewed. Although the number of cases of malaria peaked a third time in 2010 (1,772 cases) since the re-emergence of P. vivax, the incidence decreased two-fold to 838 in 2011 and three-fold to 555 in 2012. The number of cases decreased 52.7% in 2011 compared with that in 2010 and 33.8% in 2012 compared with that in 2011. However, the number of cases increased in Incheon Metropolitan City (15.3%) and Gyeongnam Province (23.1%) in 2012 compared with 2011. Of the 3,165 cases of vivax malaria in 2010--2012, 798 (25.2%) were in ROK military personnel, 519 (16.4%) in veterans, and 1,848 (58.4%) in civilians. In total, there were 2,666 male patients and 499 female patients, and the ratio of female to male patients increased from 1:7.9 in 2011 to 1:4.1 in 2012. A rapid decrease in the incidence of malaria was observed in most areas from 2010 to 2012, but the incidence increased again in the western part of the demilitarized zone. Therefore, more intensive surveillance is needed throughout high risk areas to identify factors responsible for increase/decrease in the incidence of malaria in the ROK.
    Malaria Journal 09/2013; 12(1):309. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Assaying for the parasitic lactate dehydrogenase (pLDH) is widely used as a rapid diagnostic test (RDT), but the efficacy of its serological effectiveness in diagnosis, that is antibody detection ability, is not known. The genetic variation of Korean isolates was analysed, and recombinant protein pLDH was evaluated as a serodiagnostic antigen for the detection of Plasmodium vivax malaria. METHODS: Genomic DNA was purified, and the pLDH gene of P. vivax was amplified from blood samples from 20 patients. The samples came from five epidemic areas: Bucheon-si, Gimpo-si, and Paju-si of Gyeonggi Province, Gangwha-gun of Incheon metropolitan city, and Cheorwon-gun of Gangwon Province, South Korea, from 2010 to 2011. The antigenicity of the recombinant protein pLDH was tested by western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS: Sequence analysis of 20 Korean isolates of P. vivax showed that the open reading frame (ORF) of 951 nucleotides encoded a deduced protein of 316 amino acids (aa). This ORF showed 100% identity with the P. vivax Belem strain (DQ060151) and P. vivax Hainan strain (FJ527750), 89.6% homology with Plasmodium falciparum FCC1_HN (DQ825436), 90.2% homology with Plasmodium berghei (AY437808), 96.8% homology with Plasmodium knowlesi (JF958130), and 90.2% homology with Plasmodium reichenowi (AB122147). A single-nucleotide polymorphism (SNP) at nucleotide 456 (T to C) was also observed in the isolate from Bucheon, but it did not change in the amino acid sequence. The expressed recombinant protein had a molecular weight of approximately 32 kDa, as analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Of the 40 P. vivax patients, 34 (85.0%) were positive by ELISA. CONCLUSIONS: The pLDH genes of 19 isolates of P. vivax were identical, except one for SNP at nucleotide 456. This observation indicates that this gene is relatively stable. Based on these results, the relationship between antibody production against pLDH and the pattern of disease onset should be investigated further before using pLDH for serodiagnosis.
    Malaria Journal 05/2013; 12(1):166. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax re-emerged in 1993 and has now become a major public health problem during the summer season in South Korea. The aim of this study was to interpret and understand the meaning of seroepidemiological studies for developing the best malaria control programme in South Korea. Blood samples were collected in Gimpo city, Paju city, Yeoncheon County, Cheorwon County and Goseong County of high risk area in South Korea. Microscopy was performed to identify patients infected with P. vivax. Antibody detection for P. vivax was performed using indirect fluorescent antibody test (IFAT). A total of 1,574 blood samples was collected from participants in the study areas and evaluated against three parameters: IFAT positive rate, annual antibody positive index (AAPI), and annual parasite index (API). The IFAT positive rate was 7.24% (n = 114). Of the five study areas, Gimpo had the highest IFAT positive rate (13.68%) and AAPI (4.63). Yeongcheon had the highest API in 2005 (2.06) while Gimpo had the highest API in 2006 (5.00). No correlation was observed between any of the three parameters and study sites' distance from the demilitarized zone (DMZ). These results showed that P. vivax antibody levels could provide useful information about the prevalence of malaria in endemic areas. Furthermore, AAPI results for each year showed a closer relationship to API the following year than the API of the same year and thus could be helpful in predicting malaria transmission risks.
    Malaria Journal 08/2012; 11:257. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The malaria aldolase is widely used as rapid diagnostic test (RDT), but the efficacy in aspect of its serological effectiveness in diagnosis is not known. The genetic variation of Korean isolates was analysed and recombinant aldolase was evaluated as a serological antigen in Plasmodium vivax malaria. Genomic DNA was purified and the aldolase gene of P. vivax from 25 patients' blood samples was amplified. The samples came from 5 epidemic areas; Bucheon-si, Gimpo-si, Paju-si of Gyeonggido, Gangwha-gun of Incheon metropolitan city, and Cheorwon of Gangwon-do, South Korea. The antigenicity of the recombinant aldolase was tested by western blot and enzyme-linked immunosorbent assay (ELISA). Sequence analysis of 25 Korean isolates of P. vivax showed that the open reading frame (ORF) of 1,110 nucleotides encoded a deduced protein of 369 amino acids (aa). This ORF showed 100% homology with the P. vivax Sal I strain (XM_00165894) and P. vivax WDK strain (AF247063), 87.4% homology with Plasmodium falciparum (AF179421), 90.6% homology with Plasmodium chabaudi (AF247060), 89.5% homology with Plasmodium vinckei (AF247061), and 96.7% homology with Plasmodium knowlesi. A single nucleotide polymorphism (SNP) at nucleotide 180 (G to A, n = 5) was also observed in the isolates. The expressed recombinant protein had a molecular weight of approximately 31 kDa (monomeric form) and 62 kDa (dimeric form) as analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Among 109 P. vivax patients, 32 (29.4%) had positive in an enzyme-linked absorbance assay (ELISA). This result showed significant correlation between ELISA and an indirect fluorescent antibody test (IFAT) (P < 0.0001). The aldolase gene from Korean isolates of P. vivax showed one SNP at nucleotide position 180; this SNP mutant was discovered in only the western part of Han River, and included the regions of Ganghwa, Gimpo, and Bucheon. Based on the results, the relationship between antibody production against aldolase and the pattern of disease onset should be more investigated before using aldolase for serodiagnosis.
    Malaria Journal 05/2012; 11:159. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the profile of antibodies against several antigens of Plasmodium vivax and Plasmodium falciparum in Mandalay, Myanmar. Malaria parasites were identified by microscopic examination. To test the antibodies against P. vivax and P. falciparum in sera, an indirect immunofluorescence antibody test (IFAT) was performed using asexual blood parasite antigens. An enzyme-linked immunosorbent assay (ELISA) was performed with circumsporozoite protein (CSP), Pvs25 and Pvs28 recombinant proteins of transmission-blocking vaccine candidates for P. vivax, and liver stage specific antigen-1 and -3 (PfLSA-1, PfLSA-3) for P. falciparum. Fourteen patients among 112 were found to be infected with P. vivax and 26 with P. falciparum by thick smear examination. Twenty-three patients were found to be infected with P. vivax, 19 with P. falciparum and five with both by thin smear examination. Blood samples were divided into two groups: Group I consisted of patients who were positive for infection by microscopic examination, and Group II consisted of those who showed symptoms, but were negative in microscopic examination. In P. falciparum, IgG against the blood stage antigen in Group I (80.8%) was higher than in Group II (70.0%). In P. vivax, IgG against the blood stage antigen in Group I (53.8%) was higher than in Group II (41.7%). However, the positivity rate of the PvCSP VK210 subtype in Group II (40.0%) was higher than in Group I (23.1%). Similarly for the PvCSP VK247 subtype, Group II (21.7%) was higher than that for Group I (9.6%). A similar pattern was observed in the ELISA using Pvs25 and Pvs28: positive rates of Group II were higher than those for Group I. However, those differences were not shown significant in statistics. The positive rates for blood stage antigens of P. falciparum were higher in Group I than in Group II, but the positive rates for antigens of other stages (PfLSA-1 and -3) showed opposite results. Similar to P. falciparum, the positive rate of pre-blood stage (CSP VK210 and 247 subtype) and post-blood stage (Pvs25 and 28) antigens of P. vivax were higher in Group II than in Group I. Therefore, sero-diagnosis is not helpful to discriminate between malaria patients and symptomatic individuals during the epidemic season in Myanmar.
    Malaria Journal 08/2011; 10:228. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is classified into two serotypes, VK210 [the dominant form-GDRA(D/A)GQPA repeats] and VK247 [the variant form-ANGA(G/D)(N/D)QPG repeats], based on sequence variation of the repeat region of the circumsporozoite (CS) protein gene. Genomic DNA for the variant CS protein gene was obtained from field isolate strains in Myanmar. The repetitive region has highly 19 immunogenic repeats flanked by non-repeat stretches of amino acids. The sequence including this region (717 bp) was subcloned into the expression vector pQE30 and expressed in Escherichia coli. The expressed recombinant protein has a molecular weight of about 50 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Anti-VK247 antibodies were found in malaria patients who have been exposed to variant form of P. vivax in western blot analysis. Therefore, this recombinant protein might be a useful tool in serodiagnosis of malaria patients who have been infected with variant form of P. vivax.
    Parasitology Research 02/2011; 108(5):1275-82. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To develop a vivax malaria vaccine for blocking malarial transmission, the ookinete surface protein Pvs28 was cloned from Korean malaria patients using polymerase chain reaction. The Pvs28 gene consists of 726bp and encodes 241 amino acids. It was subcloned into the expression vector pQE30 and expressed in Escherichia coli. The expressed recombinant protein, rPvs28, has a molecular weight of about 28 kDa in SDS-PAGE analysis. A monoclonal antibody against rPvs28 was produced using BALB/c mice. It inhibited sporozoite development in Anopheles sinensis mosquitoes (n = 81) which is one of the malaria vectors in Korea, with relatively high antibody titer against rPv28 persisting for more than 6 months. These results indicate that rPvs28 induces an immune response in mice that effectively blocks sporozoite development in mosquitoes. Therefore it could be a vaccine candidate for preventing vivax malaria in Korea.
    Experimental Parasitology 02/2011; 127(2):346-50. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: First reemerged malaria case was reported in 1993 after two decades absent in South Korea. Thereafter, Plasmodium vivax spreads out near demilitarized zone (DMZ). This study investigated the prevalence of P. vivax after the malaria transmission season in Gimpo-si where adjacent to DMZ of South Korea. An indirect fluorescent antibody test (IFAT) was performed to evaluate anti-malaria antibodies in blood samples. Microscopic examinations were performed to identify the presence of malaria parasites. Antibodies against P. vivax were detected using IFAT, and blood samples from antibody-positive cases were tested using a polymerase chain reaction (PCR) assay that detects malaria parasites. A total of 5,797 blood samples were collected from residents in Gimpo-si. The positivity rate by IFAT was 2.16% (n = 125). Yangchon-myeon (3.28%) had the highest positivity rate of the seven administrative districts tested. Positivity rates increased with age (P < 0.05). Sixteen of the IFAT positive samples (12.80%, n = 125) were positive for malaria DNA according to PCR. Blood samples with an antibody titer over 1:256 had high positivity rates in the PCR analysis (P < 0.05). These results indicate that antibody titers obtained using IFAT may provide useful information about the prevalence of P. vivax in low endemic areas and could be used to detect asymptomatic patients. Finding asymptomatic patients is important in eliminating vivax malaria in South Korea.
    Malaria Journal 01/2011; 10:19. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP), a component of sporozoites that contains a B-cell epitope. A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR), beta-glucuronidase reporter gene (GUS) assay, and Western blot. The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n=38) and a clinical specificity of 100% (n=24) as assessed by enzyme-linked immunosorbent assay (ELISA). Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40), TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria.
    Malaria Journal 01/2011; 10:106. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To use pyrimethamine as an alternative anti-malarial drug for chloroquine-resistant malaria parasites, it was necessary to determine the enzyme's genetic variation in dihydrofolate reductase-thymidylate syntase (DHFR-TS) among Korean strains. Genetic variation of dhfr-ts genes of Plasmodium vivax clinical isolates from patients who did not respond to drug treatment (n = 11) in Korea were analysed. The genes were amplified using the polymerase chain reaction (PCR) with genomic DNA as a template. Sequence analysis showed that the open reading frame (ORF) of 1,857 nucleotides encoded a deduced protein of 618 amino acids (aa). Alignment with the DHFR-TS genes of other malaria parasites showed that a 231-residue DHFR domain and a 286-residue TS domain were seperated by a 101-aa linker region. This ORF shows 98.7% homology with the P. vivax Sal I strain (XM001615032) in the DHFR domain, 100% in the linker region and 99% in the TS domain. Comparison of the DHFR sequences from pyrimethamine-sensitive and pyrimethamine-resistant P. vivax isolates revealed that nine isolates belonged to the sensitive strain, whereas two isolates met the criteria for resistance. In these two isolates, the amino acid at position 117 is changed from serine to asparagine (S117N). Additionally, all Korean isolates showed a deletion mutant of THGGDN in short tandem repetitive sequences between 88 and 106 amino acid. These results suggest that sequence variations in the DHFR-TS represent the prevalence of antifolate-resistant P. vivax in Korea. Two of 11 isolates have the Ser to Asn mutation in codon 117, which is the major determinant of pyrimethamine resistance in P. vivax. Therefore, the introduction of pyrimethamine for the treatment of chloroquine-resistant vivax malaria as alternative drug in Korea should be seriously considered.
    Malaria Journal 11/2010; 9:331. · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To develop a vaccine to block the transmission of vivax malaria, the gene encoding the ookinete surface protein Pvs25 was cloned from a Korean malaria patient. The Pvs25 gene was 660 bp long, encoding 219 amino acids. It was subcloned into the expression vector pQE30 and expressed in Escherichia coli. The expressed recombinant protein, named rPvs25, showed a molecular mass of approximately 25 kDa by SDS-PAGE analysis. An anti-rPvs25 monoclonal antibody produced in BALB/c mice was able to inhibit sporozoite development in the mosquito Anopheles sinensis, which is known as the malaria transmission vector in the Republic of Korea. In addition, rPvs25 produced a relatively high antibody titer in BALB/c mice that lasted for more than 6 months. Based on these results, we suggest that recombinant Pvs25 could be a useful antigen in the development of a vaccine to prevent local malaria transmission in the Republic of Korea.
    Clinical and vaccine Immunology: CVI 08/2010; 17(8):1183-7. · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The merozoite surface protein-1 (MSP-1) from Plasmodium vivax was evaluated as an oral vaccine candidate by cloning and expressing the interspecies conserved block 10 (ICB10) of the MSP-1 from a Korean isolate in Escherichia coli. The expressed fusion protein contained ICB10 and a maltose-binding protein (MBP), rPv54, has a molecular weight of approximately 54 kDa as determined by SDS-PAGE analysis. IgG against rPv54 was successfully produced in BALB/c mice by oral immunization and sustained for more than 4 months. IgG2b was dominantly produced in both oral and parenteral immunizations. The rPv54 increased the frequency of NK, NKT, CD4+ T, CD8+ T, and B cells in both immunizations. IL-5 and TNF-alpha were increased in both significantly. In conclusion, rPv54 might be a valuable potential vaccine candidate for the oral and parenteral immunization against vivax malaria.
    Experimental Parasitology 05/2010; 126(2):217-23. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax is divided into two subtypes, a dominant form, VK210 and a variant form, VK247. This division is dependent on the amino acid composition of the circumsporozoite (CS) protein. In this study, the prevalence of the VK247 variant form of P. vivax was investigated in Myanmar. The existence of malaria parasites in blood samples was determined by microscopic examination, polymerase chain reaction (PCR) and DNA hybridization assays. To test for antibodies against P. vivax and Plasmodium falciparum in blood samples, an indirect immunofluorescence antibody test (IFAT) was performed using asexual blood antigens. An enzyme-linked immunosorbent assay with synthetic VK210 and VK247 antigens was carried out to discriminate between the P. vivax subtypes. By thick smear examination, 73 (n=100) patients were single infected with P. vivax, one with P. falciparum and 13 with both species. By thin smear, 53 patients were single infected with P. vivax, eight with only P. falciparum and 16 with both. Most of the collected blood samples were shown to be P. vivax positive (n=95) by PCR. All cases that were positive for P. falciparum by PCR (n=43) were also positive for P. vivax. However, 52 cases were single infected with P. vivax. IFAT showed antibody titres from 1:32 to 1:4,096. Additionally, using specific antibodies for VK210 and VK247, ELISA showed that 12 patients had antibodies for only the VK210 subtype, 4 patients had only VK247 subtype antibodies and 21 patients had antibodies for both subtypes. Using a DNA hybridization test, 47 patients were infected with the VK210 type, one patient was infected with VK247 and 23 patients were infected with both subtypes. The proportion of the VK247 subtype in Myanmar was 43.1% (n=25) among 58 positive cases by serodiagnosis and 25.6% (n=24) among 94 positive cases by genetic diagnosis. In both diagnostic methods, the infection status of malaria patients is highly diverse with respect to malaria species, and multiple clonal infections are prevalent in Myanmar. Therefore, the complexity of the infection should be considered carefully when diagnosing malaria in Myanmar.
    Malaria Journal 01/2010; 9:195. · 3.49 Impact Factor

Publication Stats

45 Citations
49.03 Total Impact Points

Institutions

  • 2011–2013
    • Kyung Hee University
      • • Institute of Oriental Medicine
      • • Institute of Global Environment
      Sŏul, Seoul, South Korea
    • Inha University
      • Department of Parasitology
      Seoul, Seoul, South Korea
  • 2012
    • Jungwon University
      Sŏul, Seoul, South Korea
  • 2010–2012
    • Korea Centers for Disease Control and Prevention
      Daiden, Daejeon, South Korea
    • University of Florida
      • Department of Plant Pathology
      Gainesville, FL, United States
  • 2010–2011
    • Sangji University
      • College of Oriental Medicine
      Genshū, Gangwon, South Korea