Are you Xiaoshan Wang?

Claim your profile

Publications (3)4.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Gambogenic acid, identified from Gamboge, is responsible for anti-tumor effects, and has been shown to be a potential molecule against human cancers. In this study, the molecular mechanism of gambogenic acid-induced apoptosis in HepG2 cells was investigated. Gambogenic acid significantly inhibited cell proliferation and induced apoptosis. Acridine orange/ethidium bromide (AO/EB) staining was used to observe apoptosis, and then confirmed by transmission electron microscopy. Gambogenic acid induced apoptosis and morphological changes in mitochondria, and intracellular reactive oxygen species (ROS) and mitochondrial membrane permeabilization (MMP) in mitochondrial apoptosis pathway were also examined. Results showed that the levels of phospho-p38 and its downstream phospho-Erk1/2 of HepG2 cells increased in time- and concentration-dependent manners after gambogenic acid treatments. Additionally, gambogenic acid increased expression ratio of Bcl-2/Bax in mRNA levels, Western blotting analysis also further confirmed the reduced level of Bcl-2 and increase the expression level of Bax in HepG2 cells. These results indicated that gambogenic acid induced mitochondrial oxidative stress and activated caspases through a caspase-3 and caspase-9-dependent apoptosis pathway. Moreover, gambogenic acid mediated apoptosis and was involved in the phospho-Erk1/2 and phospho-p38 MAPK proteins expression changes in HepG2 cells.
    Environmental toxicology and pharmacology. 03/2012; 33(2):181-90.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, Gambogenic acid exhibits potential anti-tumor activity in several cancer cell lines. However, Gambogenic acid-induced apoptosis mechanism is not well understood. Here, we report that Gambogenic acid was capable to induce CNE-1 cells apoptosis and caused mitochondrial and endoplasmic reticulum injury, analyzed via transmission electron microscopy and acridine orange/ethidium bromide (AO/EB) double staining. To quantitatively analyze apoptosis, through the propidium iodide (PI)/Annexin V-FITC double staining to detect cell apoptosis, PI staining of the cell cycle distribution. To further explore the potential mechanism of Gambogenic acid mediated apoptosis in CNE-1 cells, we also examined mitochondrial oxidative stress in the levels of reactive oxygen species, the release of cytochrome c, intracellular Ca(2+) concentration and mitochondrial membrane potential by flow cytometry. Moreover, Gambogenic acid could result in a time and concentration-dependent decrease in Phospho-Akt expression, basal expression levels of Akt change was not obvious, In addition, we detected Bcl-2 family including Bcl-2, Bax and Bad expression in mRNA level. This resulted in a decrease of Bcl-2 and Bad increased in CNE-1 cells after Gambogenic acid treatment. Overall, our results indicated that Gambogenic acid mediated apoptosis through inactivation of Akt, accompanied with mitochondrial oxidative stress and cross-talk with Bcl-2 family in the process of apoptosis.
    European journal of pharmacology 02/2011; 652(1-3):23-32. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although anticancer effect of gambogic acid (GA) and its potential mechanisms were well documented in past decades, limited information is available on the anticancer effect of gambogenic acid (GNA), another major active component of Gamboge. Here we performed a study to determine whether GNA possesses anticancer effect and find its potential mechanisms. The results suggested that GNA significantly inhibited the proliferation of several tumor cell lines in vitro and in vivo. Treatment with GNA dose and time dependently induced A549 cells apoptosis, arrested the cells to G0/G1 phase in vitro and down-regulated the expression of cyclin D1 and cyclooxygenase (COX)-2 in mRNA level. In addition, anticancer effect was further demonstrated by applying xenografts in nude mice coupled with the characteristic of apoptosis in the GNA treated group. Taken together, these observations might suggest that GNA inhibits tumor cell proliferation via apoptosis-induction and cell cycle arrest.
    Biological & Pharmaceutical Bulletin 01/2010; 33(3):415-20. · 1.85 Impact Factor