P J Berger

Iowa State University, Ames, Iowa, United States

Are you P J Berger?

Claim your profile

Publications (6)14.52 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A previous genome-wide search with a moderate density 10K marker set identified many marker associations with twinning rate, either through single-marker analysis or combined linkage-linkage disequilibrium (LLD; haplotype) analysis. The objective of the current study was to validate putative marker associations using an independent set of phenotypic data. Holstein bulls (n = 921) from 100 paternal half-sib families were genotyped. Twinning rate predicted transmitting abilities were calculated using calving records from 1994 to 1998 (Data I) and 1999 to 2006 (Data II), and the underlying liability scores from threshold model analysis were used as the trait in marker association analyses. The previous analysis used 201 bulls with daughter records in Data I. In the current analysis, this was increased to 434, providing a revised estimate of effect and significance. Bulls with daughter records in Data II totaled 851, and analysis of this data provided the validation of results from analysis of Data I. Single nucleotide polymorphisms (SNPs) were selected to validate previously significant single-marker associations and LLD results. Bulls were genotyped for a total of 306 markers. Nine of 13 LLD regions located on chromosomes 1, 2, 3, 6, 9, 22, 23(2) and 26 were validated, showing significant results for both Data I and II. Association analysis revealed 55 of 174 markers validated, equating to a single-marker validation rate of 31%. Stepwise backward elimination and cross-validation analyses identified 18 SNPs for use in a final reduced marker panel explaining 34% of the genetic variation, and to allow prediction of genetic merit for twinning rate.
    Animal Genetics 03/2010; 41(4):406-16. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A previous genome-wide search with a moderate-density 10,000-SNP set identified many marker associations with twinning rate on BTA14 through either single-marker analysis or combined linkage-linkage disequilibrium (LLD; haplotype) analysis. The objective of the current study was to fine-map putative QTL using a more densely populated marker map and both a larger and an independent set of phenotypic data. Holstein bulls (n = 921) from 100 paternal half-sib families were genotyped for 129 SNP markers that included both original and additionally selected markers for increasing marker density in the targeted 34 megabase region. Twinning rate predicted transmitting abilities were calculated using calving records from 1994 to 1998 (data I) and 1999 to 2006 (data II), and the underlying liability scores from threshold model analysis were used as the trait in marker association analyses. The previous analysis used 201 bulls with daughter records in data I. In the current analysis, this was increased to 434, providing a revised estimate of effect and significance. Bulls with daughter records in data II totaled 851, and analysis of these data provided an opportunity for an independent analysis separate from data I. Single-marker association and LLD analyses were performed. Fifteen significant single-marker associations were found (minimally exceeding P < 8.74 x 10(-3)) to concur between data sets. Three and 12 regions in data I and data II, respectively, showed positive results for the presence of QTL from LLD analysis (P < 0.001) within the respective data sets. After combining results from single-marker association, LLD analysis, and model-building strategies, 3 QTL were identified on BTA14. Based on single-marker results from data II, BTA14 harbors QTL responsible for approximately 24% of the variation in twinning rate predicted transmitting ability.
    Journal of Animal Science 03/2010; 88(8):2556-64. · 2.09 Impact Factor
  • E-S Kim, P J Berger, B W Kirkpatrick
    [Show abstract] [Hide abstract]
    ABSTRACT: Twinning is a complex trait with negative impacts on health and reproduction, which cause economic loss in dairy production. Several twinning rate quantitative trait loci (QTL) have been detected in previous studies, but confidence intervals for QTL location are broad and many QTL are unreplicated. To identify genomic regions or genes associated with twinning rate, QTL analysis based on linkage combined with linkage disequilibrium (LLD) and individual marker associations was conducted across the genome using high-throughput single nucleotide polymorphism (SNP) genotypes. A total of 9919 SNP markers were genotyped with 200 sires and sons in 19 half-sib North American Holstein dairy cattle families. After SNPs were genotyped, informative markers were selected for genome-wide association tests and QTL searches. Evidence for twinning rate QTL was found throughout the genome. Thirteen markers significantly associated with twinning rate were detected on chromosomes 2, 5 and 14 (P < 2.3 x 10(-5)). Twenty-six regions on fourteen chromosomes were identified by LLD analysis at P < 0.0007. Seven previously reported ovulation or twinning rate QTL were supported by results of single marker association or LLD analyses. Single marker association analysis and LLD mapping were complementary tools for the identification of putative QTL in this genome scan.
    Animal Genetics 02/2009; 40(3):300-7. · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twinning in cattle is a complex trait that is associated with economic loss and health issues such as abortion, dystocia, and reduced calf survival. Twinning-rate QTL have been detected previously on BTA5 in the North American Holstein and Norwegian dairy cattle populations and in a USDA herd selected for high twinning rate. In previous work with the North American Holstein population, the strongest evidence for a QTL was obtained from analysis of an extended, multiple-generation family. Using additional animals, an increased density of SNP marker association tests, and a combined linkage and linkage disequilibrium mapping method, we refined the position of this QTL in the North American Holstein population. Two sets of twinning-rate predicted transmitting abilities estimated during 2 different time periods in the North American dairy cattle population were used to provide validation of results. A total of 106 SNP and 3 microsatellites were used to scan the genomic region between 5 and 80 Mb on BTA5. Combined linkage-linkage disequilibrium analysis identified significant evidence for QTL within the 25- to 35-Mb and 64- to 70-Mb regions of BTA5. The IGF-1 gene (IGF1) was examined as a positional candidate gene and an SNP in intron 2 of IGF1 was significantly associated with twinning rate by using both data sets (P = 0.003 and P = 1.05 x 10(-6)). Replication of this association in other cattle populations will be required to examine the extent of linkage disequilibrium with the underlying quantitative trait nucleotide across breeds.
    Journal of Animal Science 12/2008; 87(3):835-43. · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to identify twinning rate quantitative trait loci (QTL) by typing pooled samples in a preliminary screening followed by interval mapping to test QTL effects. Four elite North American Holstein half-sib sire families with high twinning rate predicted transmitting abilities (PTA) were used in this study. Chromosomes 5, 7, 19 and 23 were not genotyped as these chromosomes were scanned for QTL in these families in a previous study. DNA was extracted from phenotypically extreme sons in each sire family. Two pools were prepared from sons of sires in each phenotypic tail, two each for high and low PTA levels for twinning rates. Each pool contained DNA from 4 to 15% of all sons of the sire depending on family. A total of 268 fluorescently labelled microsatellite markers were tested for heterozygosity in sires. About 135--170 informative markers per family were genotyped using pooled DNA samples. Based on the preliminary evidence for potential twinning rate QTL from pooled typing, interval mapping was performed subsequently on 12 chromosomal regions by family combinations. Evidence of QTL for twinning rate was found in one family on BTA 21 and 29 at a chromosome-wide P<0.05 and on BTA 8, 10 and 14 with a chromosome-wide P<0.01.
    Animal Genetics 08/2005; 36(4):303-8. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Twinning in dairy cattle has been associated with many negative health and reproductive events that cause economic loss to the producer. Reports have suggested that twinning rates are increasing and that there may be a positive relationship between milk production and twinning frequency. Putative quantitative trait loci (QTL) for twinning and ovulation rate on bovine chromosomes 5, 7, 19 and 23 have been previously identified in other populations. The objective of this study was to detect and possibly confirm the existence and effects of these QTL in the North American Holstein population. Half-sib families of 20 North American Holstein sires with above average twinning rate predicted transmitting abilities (PTA) comprised the sample population under investigation. Twinning rate PTA values had been estimated from calving data. DNA extracted from semen samples was analysed using 45-61 microsatellite markers across the four chromosomes. Marker heterozygosity of the patriarchs averaged 62%. Evidence of twinning QTL was found in multiple families on chromosomes 5, 7 and 23 and in one family on chromosome 19. Four of the sires formed one three-generation family: one sire and three half-sib sons with sons of their own. This extended family was analysed with additional markers confirming a twinning QTL of significant size on chromosome 5.
    Animal Genetics 07/2004; 35(3):206-12. · 2.58 Impact Factor

Publication Stats

68 Citations
14.52 Total Impact Points

Institutions

  • 2004–2010
    • Iowa State University
      • Department of Animal Science
      Ames, Iowa, United States
    • University of Wisconsin, Madison
      • • Department of Animal Sciences
      • • Department of Dairy Science
      Madison, MS, United States