Pantep Angchaisuksiri

University of Utah, Salt Lake City, Utah, United States

Are you Pantep Angchaisuksiri?

Claim your profile

Publications (2)13.15 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By guiding initial warfarin dose, pharmacogenetic (PGx) algorithms may improve the safety of warfarin initiation. However, once international normalised ratio (INR) response is known, the contribution of PGx to dose refinements is uncertain. This study sought to develop and validate clinical and PGx dosing algorithms for warfarin dose refinement on days 6-11 after therapy initiation. An international sample of 2,022 patients at 13 medical centres on three continents provided clinical, INR, and genetic data at treatment days 6-11 to predict therapeutic warfarin dose. Independent derivation and retrospective validation samples were composed by randomly dividing the population (80%/20%). Prior warfarin doses were weighted by their expected effect on S-warfarin concentrations using an exponential-decay pharmacokinetic model. The INR divided by that "effective" dose constituted a treatment response index . Treatment response index, age, amiodarone, body surface area, warfarin indication, and target INR were associated with dose in the derivation sample. A clinical algorithm based on these factors was remarkably accurate: in the retrospective validation cohort its R(2) was 61.2% and median absolute error (MAE) was 5.0 mg/week. Accuracy and safety was confirmed in a prospective cohort (N=43). CYP2C9 variants and VKORC1-1639 Gā†’A were significant dose predictors in both the derivation and validation samples. In the retrospective validation cohort, the PGx algorithm had: R(2)= 69.1% (p<0.05 vs. clinical algorithm), MAE= 4.7 mg/week. In conclusion, a pharmacogenetic warfarin dose-refinement algorithm based on clinical, INR, and genetic factors can explain at least 69.1% of therapeutic warfarin dose variability after about one week of therapy.
    Thrombosis and Haemostasis 12/2011; 107(2):232-40. DOI:10.1160/TH11-06-0388 · 5.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Well-characterized genes that affect warfarin metabolism (cytochrome P450 (CYP) 2C9) and sensitivity (vitamin K epoxide reductase complex 1 (VKORC1)) explain one-third of the variability in therapeutic dose before the international normalized ratio (INR) is measured. To determine genotypic relevance after INR becomes available, we derived clinical and pharmacogenetic refinement algorithms on the basis of INR values (on day 4 or 5 of therapy), clinical factors, and genotype. After adjusting for INR, CYP2C9 and VKORC1 genotypes remained significant predictors (P < 0.001) of warfarin dose. The clinical algorithm had an R2 of 48% (median absolute error (MAE): 7.0 mg/week) and the pharmacogenetic algorithm had an R2 of 63% (MAE: 5.5 mg/week) in the derivation set (N = 969). In independent validation sets, the R2 was 26ā€“43% with the clinical algorithm and 42ā€“58% when genotype was added (P = 0.002). After several days of therapy, a pharmacogenetic algorithm estimates the therapeutic warfarin dose more accurately than one using clinical factors and INR response alone.
    Clinical Pharmacology &#38 Therapeutics 04/2010; 87(5):572-578. DOI:10.1038/clpt.2010.13 · 7.39 Impact Factor