Mohit Kumar

Universität Heidelberg, Heidelberg, Baden-Wuerttemberg, Germany

Are you Mohit Kumar?

Claim your profile

Publications (3)20.53 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria, fungi and plants rescue aggregated proteins using a powerful bichaperone system composed of an Hsp70 chaperone and an Hsp100 AAA+ disaggregase. In Escherichia coli, the Hsp70 chaperone DnaK binds aggregates and targets the disaggregase ClpB to the substrate. ClpB hexamers use ATP to thread substrate polypeptides through the central pore, driving disaggregation. How ClpB finds DnaK and regulates threading remains unclear. To dissect the disaggregation mechanism, we separated these steps using primarily chimeric ClpB-ClpV constructs that directly recognize alternative substrates, thereby obviating DnaK involvement. We show that ClpB has low intrinsic disaggregation activity that is normally repressed by the ClpB middle (M) domain. In the presence of aggregate, DnaK directly binds M-domain motif 2, increasing ClpB ATPase activity to unleash high ClpB threading power. Our results uncover a new function for Hsp70: the coupling of substrate targeting to AAA+ chaperone activation at aggregate surfaces.
    Nature Structural & Molecular Biology 11/2012; · 11.90 Impact Factor
  • Source
    Mohit Kumar, Victor Sourjik
    [Show abstract] [Hide abstract]
    ABSTRACT: Diverse families of molecular chaperones cooperate to effect protein homeostasis, but the extent and dynamics of direct interactions among chaperone systems within cells remain little studied. Here we used fluorescence resonance energy transfer to systematically map the network of pairwise interactions among the major Escherichia coli chaperones. We demonstrate that in most cases functional cooperation between chaperones within and across families involves physical complex formation, which pre-exists even in the absence of folding substrates. The observed connectivity of the overall chaperone network confirms its partitioning into sub-networks that are responsible for de novo protein folding and maturation and for refolding/disaggregation of misfolded proteins, respectively, and are linked by the Hsp70 system. We further followed heat-induced changes in the cellular chaperone network, revealing two distinct pathways that process heat-denatured substrates. Our data suggest that protein folding within cells relies on highly ordered and direct channelling of substrates between chaperone systems and provide a comprehensive view of the underlying interactions and of their dynamics.
    Molecular Microbiology 03/2012; 84(4):736-47. · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein mobility affects most cellular processes, such as the rates of enzymatic reactions, signal transduction, and assembly of macromolecular complexes. Despite such importance, little systematic information is available about protein diffusion inside bacterial cells. Here we combined fluorescence recovery after photobleaching with numerical modeling to analyze mobility of a set of fluorescent protein fusions in the bacterial cytoplasm, the plasma membrane, and in the nucleoid. Estimated diffusion coefficients of cytoplasmic and membrane proteins show steep dependence on the size and on the number of transmembrane helices, respectively. Protein diffusion in both compartments is thus apparently obstructed by a network of obstacles, creating the so-called molecular sieving effect. These obstructing networks themselves, however, appear to be dynamic and allow a slow and nearly size-independent movement of large proteins and complexes. The obtained dependencies of protein mobility on the molecular mass and the number of transmembrane helices can be used as a reference to predict diffusion rates of proteins in Escherichia coli. Mobility of DNA-binding proteins apparently mainly depends on their binding specificity, with FRAP recovery kinetics being slower for the highly specific TetR repressor than for the relatively nonspecific H-NS regulator.
    Biophysical Journal 02/2010; 98(4):552-9. · 3.67 Impact Factor