Mengmeng Zhang

University of Texas at Austin, Austin, TX, United States

Are you Mengmeng Zhang?

Claim your profile

Publications (4)12.43 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Protein phosphatases, as the counterpart to protein kinases, are essential for homeostatic balance of cell signaling. Small chemical compounds that modulate the specific activity of phosphatases can be powerful tools to elucidate the biological functions of these enzymes. More importantly, many phosphatases are central players in the development of pathological pathways where inactivation can reverse or delay the onset of human diseases. Therefore, potent inhibitors for such phosphatases can be of great therapeutic benefit. In contrast to the seemingly identical enzymatic mechanism and structural characterization of eukaryotic protein kinases, protein phosphatases evolved from diverse ancestors, resulting in different domain architectures, reaction mechanisms and active site properties. In this review, we will discuss for each family of serine/threonine protein phosphatases, their involvement in biological process and corresponding strategies for small chemical intervention. Recent advances in modern drug discovery technologies have markedly facilitated the identification of selective inhibitors for some members of the phosphatase family. Furthermore, the rapid growth in knowledge about structure-activity relationships related to possible new drug targets has aided the discovery of natural product inhibitors for phosphatase family. This review summarizes the current state of investigation of the small molecules that regulate the function of serine/threonine phosphatases, the challenges presented and also strategies to overcome these obstacles. This article is protected by copyright. All rights reserved.
    FEBS Journal 08/2013; · 4.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.
    ACS Chemical Biology 06/2012; 7(8):1462-70. · 5.44 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Human small C-terminal domain phosphatase 1 (Scp1) modulates the phosphorylation state of the C-terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II), with preference for phosphorylated Ser5 in the tandem heptad repeats of the CTD. Additionally, Scp1 was identified as a conserved regulator of neuronal stem cell development. Scp1 is a member of haloacid dehalogenase (HAD) superfamily, whose catalysis depends on a Mg(2+) ion and a DXDX(T/V) motif. The first Asp of the motif is identified as the nucleophile that is subject to phosphorylation leading to a phosphoryl-aspartate intermediate. This high-energy mixed anhydride intermediate is subsequently hydrolyzed to regenerate the enzyme. In the present study, we successfully captured the phosphoryl-aspartate intermediate in the crystal structure of a Scp1D206A mutant soaked with para-nitrophenyl phosphate (pNPP), providing strong evidence for the proposed mechanism. Furthermore, steady-state kinetic analysis of a variety of Scp1 mutants revealed the importance of Asp206 in Mg(2+) coordination mediated by a water molecule. Overall, we captured the snapshots of the phosphoryl transfer reaction at each stage of Scp1-mediated catalysis. Through structural-based sequence alignment, we show that the spatial position of the D206 side chain is strictly conserved throughout HAD family. Our results strongly suggest that Asp206 and its equivalent residues in other HAD family members play important structural and possible mechanistic roles.
    Protein Science 03/2010; 19(5):974-86. · 2.74 Impact Factor
  • Source
    Mengmeng Zhang, Gordon N Gill, Yan Zhang
    [show abstract] [hide abstract]
    ABSTRACT: In eukaryotic cells, the transcription of genes is accurately orchestrated both spatially and temporally by the C-terminal domain of RNA polymerase II (CTD). The CTD provides a dynamic platform to recruit different regulators of the transcription apparatus. Different posttranslational modifications are precisely applied to specific sites of the CTD to coordinate transcription process. Regulators of the RNA polymerase II must identify specific sites in the CTD for cellular survival, metabolism, and development. Even though the CTD is disordered in the eukaryotic RNA polymerase II crystal structures due to its intrinsic flexibility, recent advances in the complex structural analysis of the CTD with its binding partners provide essential clues for understanding how selectivity is achieved for individual site recognition. The recent discoveries of the interactions between the CTD and histone modification enzymes disclose an important role of the CTD in epigenetic control of the eukaryotic gene expression. The intersection of the CTD code with the histone code discloses an intriguing yet complicated network for eukaryotic transcriptional regulation.
    Nano reviews. 01/2010; 1.