Loyce M Okedi

Gulu University (GU), Гул, Northern Region, Uganda

Are you Loyce M Okedi?

Claim your profile

Publications (24)108.74 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of G. fuscipes fuscipes (Gff), and multiple tsetse species (Gmm, Gff and G. pallidipes) that occur in sympatry in one location. We used multiple approaches, that included deep-sequencing of the V4 hypervariable region of the 16S ribosomal RNA (rRNA) gene, 16S rRNA clone libraries and bacterium-specific quantitative PCR (qPCR), to investigate levels and patterns of gut microbial diversity from a total of 153 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (<0.05%). There were also several individuals (10%) with high Sodalis density, which also carried co-infections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct Gff and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to10(6) normalized genomes), with Gff having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to that from other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.
    Applied and Environmental Microbiology 05/2014; · 3.95 Impact Factor
  • Source
    Science. 04/2014; 344:385.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
    Science 04/2014; 344(6182):380-386. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uganda has both forms of human African trypanosomiasis (HAT): the chronic gambiense disease in the northwest and the acute rhodesiense disease in the south. The recent spread of rhodesiense into central Uganda has raised concerns given the different control strategies the two diseases require. We present knowledge on the population genetics of the major vector species Glossina fuscipes fuscipes in Uganda with a focus on population structure, measures of gene flow between populations, and the occurrence of polyandry. The microbiome composition and diversity is discussed, focusing on their potential role on trypanosome infection outcomes. We discuss the implications of these findings for large-scale tsetse control programs, including suppression or eradication, being undertaken in Uganda, and potential future genetic applications.
    Trends in Parasitology 07/2013; · 5.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Wolbachia pipientis, a diverse group of alpha-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). RESULTS: MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). CONCLUSIONS: High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda.
    BMC Evolutionary Biology 02/2013; 13(1):31. · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies (Glossina spp.) are the sole vectors of Trypanosoma brucei-the agent of human (HAT) and animal (AAT) trypanosomiasis. Glossina fuscipes fuscipes (Gff) is the main vector species in Uganda-the only country where the two forms of HAT disease (rhodesiense and gambiense) occur, with gambiense limited to the northwest. Gff populations cluster in three genetically distinct groups in northern, southern, and western Uganda, respectively, with a contact zone present in central Uganda. Understanding the dynamics of this contact zone is epidemiologically important as the merger of the two diseases is a major health concern. We used mitochondrial and microsatellite DNA data from Gff samples in the contact zone to understand its spatial extent and temporal stability. We show that this zone is relatively narrow, extending through central Uganda along major rivers with south to north introgression but displaying no sex-biased dispersal. Lack of obvious vicariant barriers suggests that either environmental conditions or reciprocal competitive exclusion could explain the patterns of genetic differentiation observed. Lack of admixture between northern and southern populations may prevent the sympatry of the two forms of HAT disease, although continued control efforts are needed to prevent the recolonization of tsetse-free regions by neighboring populations.
    BioMed research international. 01/2013; 2013:614721.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Glossina fuscipes fuscipes is the primary vector of trypanosomiasis in humans and livestock in Uganda. The Lake Victoria basin has been targeted for tsetse eradication using a rolling carpet initiative, from west to east, with four operational blocks (3 in Uganda and 1 in Kenya), under a Pan-African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). We genetically screened tsetse flies from the three Ugandan PATTEC blocks for genetic diversity at 15 microsatellite loci from continental and offshore populations to provide empirical data to support this initiative. METHODS: We collected tsetse samples from 11 sites across the Lake Victoria basin in Uganda. For genetic analysis purposes, we used 409 of the collected tsetse flies and added data collected for 278 individuals in a previous study. The flies were screened across 15 microsatellite loci and the resulting data were used to assess the temporal stability of populations, to analyze patterns of genetic exchange and structuring, to estimate dispersal rates and evaluate the sex bias in dispersal, as well as to estimate demographic parameters (NE and NC). RESULTS: We found that tsetse populations in this region were stable over 4--16 generations and belong to 4 genetic clusters. Two genetic clusters (1 and 2) corresponded approximately to PATTEC blocks 1 and 2, while the other two (3 and 4) fell within PATTEC block 3. Island populations grouped into the same genetic clusters as neighboring mainland sites, suggesting presence of gene flow between these sites. There was no evidence of the stretch of water separating islands from the mainland forming a significant barrier to dispersal. Dispersal rates ranged from 2.5 km per generation in cluster 1 to 14 km per generation in clusters 3 and 4. We found evidence of male-biased dispersal. Few breeders are successfully dispersing over large distances. Effective population size estimates were low (33--310 individuals), while census size estimates ranged from 1200 (cluster 1) to 4100 (clusters 3 and 4). We present here a novel technique that adapts an existing census size estimation method to a sampling without replacement scheme that was used in collecting tsetse flies. CONCLUSION: Our study suggests that different control strategies should be implemented for the three PATTEC blocks and that, given the high potential for re-invasion from island sites, mainland and offshore sites in each block should be targeted at the same time.
    Parasites & Vectors 10/2012; 5(1):222. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tsetse flies (Diptera: Glossinidae) are vectors for African trypanosomes (Euglenozoa: kinetoplastida), protozoan parasites that cause African trypanosomiasis in humans (HAT) and nagana in livestock. In addition to trypanosomes, two symbiotic bacteria (Wigglesworthia glossinidia and Sodalis glossinidius) and two parasitic microbes, Wolbachia and a salivary gland hypertrophy virus (SGHV), have been described in tsetse. Here we determined the prevalence of and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in Glossina fuscipes fuscipes in Uganda over a large geographical scale spanning the range of host genetic and spatial diversity. Using a multivariate analysis approach, we uncovered complex coinfection dynamics between the pathogens and statistically significant associations between host genetic groups and pathogen prevalence. It is important to note that these coinfection dynamics and associations with the host were not apparent by univariate analysis. These associations between host genotype and pathogen are particularly evident for Wolbachia and SGHV where host groups are inversely correlated for Wolbachia and SGHV prevalence. On the other hand, trypanosome infection prevalence is more complex and covaries with the presence of the other two pathogens, highlighting the importance of examining multiple pathogens simultaneously before making generalizations about infection and spatial patterns. It is imperative to note that these novel findings would have been missed if we had employed the standard univariate analysis used in previous studies. Our results are discussed in the context of disease epidemiology and vector control.
    Applied and Environmental Microbiology 04/2012; 78(13):4627-37. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.
    Applied and Environmental Microbiology 09/2011; 77(23):8400-8. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f. fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme.
    PLoS Neglected Tropical Diseases 08/2011; 5(8):e1266. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glossina pallidipes has been implicated in the spread of sleeping sickness from southeastern Uganda into Kenya. Recent studies indicated resurgence of G. pallidipes in Lambwe Valley and southeastern Uganda after what were deemed to be effective control efforts. It is unknown whether the G. pallidipes belt in southeastern Uganda extends into western Kenya. We investigated the genetic diversity and population structure of G. pallidipes in Uganda and western Kenya. AMOVA indicated that differences among sampling sites explained a significant proportion of the genetic variation. Principal component analysis and Bayesian assignment of microsatellite genotypes identified three distinct clusters: western Uganda, southeastern Uganda/Lambwe Valley, and Nguruman in central-southern Kenya. Analyses of mtDNA confirmed the results of microsatellite analysis, except in western Uganda, where Kabunkanga and Murchison Falls populations exhibited haplotypes that differed despite homogeneous microsatellite signatures. To better understand possible causes of the contrast between mitochondrial and nuclear markers we tested for sex-biased dispersal. Mean pairwise relatedness was significantly higher in females than in males within populations, while mean genetic distance was lower and relatedness higher in males than females in between-population comparisons. Two populations sampled on the Kenya/Uganda border, exhibited the lowest levels of genetic diversity. Microsatellite alleles and mtDNA haplotypes in these two populations were a subset of those found in neighboring Lambwe Valley, suggesting that Lambwe was the source population for flies in southeastern Uganda. The relatively high genetic diversity of G. pallidipes in Lambwe Valley suggest large relict populations remained even after repeated control efforts. Our research demonstrated that G. pallidipes populations in Kenya and Uganda do not form a contiguous tsetse belt. While Lambwe Valley appears to be a source population for flies colonizing southeastern Uganda, this dispersal does not extend to western Uganda. The complicated phylogeography of G. pallidipes warrants further efforts to distinguish the role of historical and modern gene flow and possible sex-biased dispersal in structuring populations.
    Parasites & Vectors 06/2011; 4:122. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glossina fuscipes fuscipes is the main vector of human and animal trypanosomiasis in Africa, particularly in Uganda. Attempts to control/eradicate this species using biological methods require knowledge of its reproductive biology. An important aspect is the number of times a female mates in the wild as this influences the effective population size and may constitute a critical factor in determining the success of control methods. To date, polyandry in G.f. fuscipes has not been investigated in the laboratory or in the wild. Interest in assessing the presence of remating in Ugandan populations is driven by the fact that eradication of this species is at the planning stage in this country. Two well established populations, Kabukanga in the West and Buvuma Island in Lake Victoria, were sampled to assess the presence and frequency of female remating. Six informative microsatellite loci were used to estimate the number of matings per female by genotyping sperm preserved in the female spermathecae. The direct count of the minimum number of males that transferred sperm to the spermathecae was compared to Maximum Likelihood and Bayesian probability estimates. The three estimates provided evidence that remating is common in the populations but the frequency is substantially different: 57% in Kabukanga and 33% in Buvuma. The presence of remating, with females maintaining sperm from different mates, may constitute a critical factor in cases of re-infestation of cleared areas and/or of residual populations. Remating may enhance the reproductive potential of re-invading propagules in terms of their effective population size. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season.
    PLoS Neglected Tropical Diseases 06/2011; 5(6):e1190. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: http://tomato.biol.trinity.edu/manuscripts/11-3/mer-10-0402.pdf We searched the Glossina morsitans morsitans genome for short sequence repeats (SSR) in order to adapt polymorphic microsatellite markers to other species of Glossina, G. fuscipes fuscipes and G. pallidipes, two major vectors of African trypanosomiasis. We tested 30 loci containing perfect di-, tri-, or tetranucleotide repeats. We identified seven polymorphic loci that amplified across both G.f. fuscipes and G. pallidipes samples, as well as seven additional loci that were variable in just one species. Five of these fourteen loci were homozygous in males of one or both species and are likely to be X-linked. Although the success rate of adapting SSR markers from the G.m. morsitans genome for use in other species was not very high, this process yielded several polymorphic markers that should be useful in future studies of tsetse ecology and evolution.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp. tritici, Cobitis lutheri, Dendroctonus ponderosae, Glossina morsitans morsitans, Haplophilus subterraneus, Kirengeshoma palmata, Lysimachia japonica, Macrolophus pygmaeus, Microtus cabrerae, Mytilus galloprovincialis, Pallisentis (Neosentis) celatus, Pulmonaria officinalis, Salminus franciscanus, Thais chocolata and Zootoca vivipara. These loci were cross-tested on the following species: Acanthina monodon, Alytes cisternasii, Alytes maurus, Alytes muletensis, Alytes obstetricans almogavarii, Alytes obstetricans boscai, Alytes obstetricans obstetricans, Alytes obstetricans pertinax, Cambarellus montezumae, Cambarellus zempoalensis, Chorus giganteus, Cobitis tetralineata, Glossina fuscipes fuscipes, Glossina pallidipes, Lysimachia japonica var. japonica, Lysimachia japonica var. minutissima, Orconectes virilis, Pacifastacus leniusculus, Procambarus clarkii, Salminus brasiliensis and Salminus hilarii.
    Molecular Ecology Resources 05/2011; 11(3):586-9. · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glossina fuscipes, a riverine species of tsetse, is the major vector of human African trypanosomiasis (HAT) in sub-Saharan Africa. Understanding the population dynamics, and specifically the temporal stability, of G. fuscipes will be important for informing vector control activities. We evaluated genetic changes over time in seven populations of the subspecies G. f. fuscipes distributed across southeastern Uganda, including a zone of contact between two historically isolated lineages. A total of 667 tsetse flies were genotyped at 16 microsatellite loci and at one mitochondrial locus. Results of an AMOVA indicated that time of sampling did not explain a significant proportion of the variance in allele frequencies observed across all samples. Estimates of differentiation between samples from a single population ranged from approximately 0 to 0.019, using Jost's DEST. Effective population size estimates using momentum-based and likelihood methods were generally large. We observed significant change in mitochondrial haplotype frequencies in just one population, located along the zone of contact. The change in haplotypes was not accompanied by changes in microsatellite frequencies, raising the possibility of asymmetric mating compatibility in this zone. Our results suggest that populations of G. f. fuscipes were stable over the 8-12 generations studied. Future studies should aim to reconcile these data with observed seasonal fluctuations in the apparent density of tsetse.
    Parasites & Vectors 02/2011; 4:19. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glossina fuscipes fuscipes, a riverine species of tsetse, is the main vector of both human and animal trypanosomiasis in Uganda. Successful implementation of vector control will require establishing an appropriate geographical scale for these activities. Population genetics can help to resolve this issue by characterizing the extent of linkage among apparently isolated groups of tsetse. We conducted genetic analyses on mitochondrial and microsatellite data accumulated from approximately 1000 individual tsetse captured in Uganda and neighboring regions of Kenya and Sudan. Phylogeographic analyses suggested that the largest scale genetic structure in G. f. fuscipes arose from an historical event that divided two divergent mitochondrial lineages. These lineages are currently partitioned to northern and southern Uganda and co-occur only in a narrow zone of contact extending across central Uganda. Bayesian assignment tests, which provided evidence for admixture between northern and southern flies at the zone of contact and evidence for northerly gene flow across the zone of contact, indicated that this structure may be impermanent. On the other hand, microsatellite structure within the southern lineage indicated that gene flow is currently limited between populations in western and southeastern Uganda. Within regions, the average F(ST) between populations separated by less than 100 km was less than approximately 0.1. Significant tests of isolation by distance suggested that gene flow is ongoing between neighboring populations and that island populations are not uniformly more isolated than mainland populations. Despite the presence of population structure arising from historical colonization events, our results have revealed strong signals of current gene flow within regions that should be accounted for when planning tsetse control in Uganda. Populations in southeastern Uganda appeared to receive little gene flow from populations in western or northern Uganda, supporting the feasibility of area wide control in the Lake Victoria region by the Pan African Tsetse and Trypanosomiasis Eradication Campaign.
    PLoS Neglected Tropical Diseases 01/2010; 4(3):e636. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved. A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG. This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and management of vector control programs in Africa.
    PLoS ONE 01/2010; 5(7):e11872. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insecticide resistance in Anopheles gambiae threatens the success of malaria vector control programmes in sub-Saharan Africa. In order to manage insecticide resistance successfully, it is essential to assess continuously the target mosquito population. Here, we collected baseline information on the distribution and prevalence of insecticide resistance and its association with target-site mutations in eastern Uganda. Anopheles gambiae s.l. adults were raised from wild-caught larvae sampled from two ecologically distinct breeding sites and exposed to WHO discriminating concentrations of DDT, permethrin, deltamethrin, bendiocarb and malathion. Survival rates to DDT were as high as 85.4%, alongside significant resistance levels to permethrin (38.5%), reduced susceptibility to deltamethrin, but full susceptibility to bendiocarb and malathion. Using molecular diagnostics, susceptible and resistant specimens were further tested for the presence of knockdown resistance (kdr) and acetylcholinesterase 1 resistance (ace-1(R)) alleles. While ace-1(R) and kdrL1014F ('kdr west') alleles were absent, the kdr L1014S ('kdr east') allele was present in both populations. In A. gambiae s.s., L1014S was closely associated with DDT and, to a lesser degree, with permethrin resistance. Intriguingly, the association between DDT resistance and the presence of L1014S is consistent with a co-dominant effect, with heterozygous individuals showing an intermediate phenotype.
    Transactions of the Royal Society of Tropical Medicine and Hygiene 04/2009; 103(11):1121-6. · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of Glossina fuscipes fuscipes, a major vector of sleeping sickness, has been severely constrained by a lack of genetic markers for mapping and population genetic studies. Here we present 10 newly developed microsatellite loci for this tsetse species. Heterozygosity levels in Moyo, an Ugandan population, averaged 0.57, with only two loci showing very low heterozygosity. Five loci carried more than six alleles. Together with five recently published microsatellite loci, this brings the number of available microsatellite loci for this species to 15. Their availability will greatly facilitate future studies on the genetics of this important human disease vector.
    Molecular Ecology Resources 11/2008; 8(6):1506-8. · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Relationships of 13 species of the genus Glossina (tsetse flies) were inferred from mitochondrial (cytochrome oxidase 1, NADH dehydrogenase 2 and 16S) and nuclear (internal transcribed spacer 1 of rDNA) sequences. The resulting phylogeny confirms the monophyly of the morphologically defined fusca, morsitans and palpalis subgenera. Genetic distances between palpalis and morsitans subspecies suggest that their status needs revision. In particular, cytochrome oxidase 1 sequences showed large geographical differences within G. palpalis palpalis, suggesting the existence of cryptic species within this subspecies. The morphology of palpalis group female genital plates was examined, and individuals were found varying outside the ranges specified by the standard identification keys, making definitive morphological classification impossible. A diagnostic PCR to distinguish G. palpalis palpalis, G. tachinoides and G. palpalis gambiensis based on length differences of internal transcribed spacer 1 sequences is presented.
    Molecular Phylogenetics and Evolution 08/2008; 49(1):227-39. · 4.07 Impact Factor

Publication Stats

223 Citations
108.74 Total Impact Points

Institutions

  • 2011–2013
    • Gulu University (GU)
      Гул, Northern Region, Uganda
    • Kenya Agricultural Research Institute
      Nairoba, Nairobi Area, Kenya
  • 2010–2013
    • Yale University
      • • Department of Epidemiology of Microbial Diseases
      • • Department of Ecology and Evolutionary Biology
      New Haven, CT, United States