Jeffrey M Hoffman

J. Craig Venter Institute, Maryland, United States

Are you Jeffrey M Hoffman?

Claim your profile

Publications (6)44.74 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: We performed a metagenomic survey (6.6 Gbp of 454 sequence data) of Southern Ocean (SO) microorganisms during the austral summer of 2007-2008, examining the genomic signatures of communities across a latitudinal transect from Hobart (44°S) to the Mertz Glacier, Antarctica (67°S). Operational taxonomic units (OTUs) of the SAR11 and SAR116 clades and the cyanobacterial genera Prochlorococcus and Synechococcus were strongly overrepresented north of the Polar Front (PF). Conversely, OTUs of the Gammaproteobacterial Sulfur Oxidizer-EOSA-1 (GSO-EOSA-1) complex, the phyla Bacteroidetes and Verrucomicrobia and order Rhodobacterales were characteristic of waters south of the PF. Functions enriched south of the PF included a range of transporters, sulfur reduction and histidine degradation to glutamate, while branched-chain amino acid transport, nucleic acid biosynthesis and methionine salvage were overrepresented north of the PF. The taxonomic and functional characteristics suggested a shift of primary production from cyanobacteria in the north to eukaryotic phytoplankton in the south, and reflected the different trophic statuses of the two regions. The study provides a new level of understanding about SO microbial communities, describing the contrasting taxonomic and functional characteristics of microbial assemblages either side of the PF.
    Environmental Microbiology 11/2012; · 5.76 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The ubiquitous SAR11 bacterial clade is the most abundant type of organism in the world's oceans, but the reasons for its success are not fully elucidated. We analysed 128 surface marine metagenomes, including 37 new Antarctic metagenomes. The large size of the data set enabled internal transcribed spacer (ITS) regions to be obtained from the Southern polar region, enabling the first global characterization of the distribution of SAR11, from waters spanning temperatures -2 to 30°C. Our data show a stable co-occurrence of phylotypes within both 'tropical' (>20°C) and 'polar' (<10°C) biomes, highlighting ecological niche differentiation between major SAR11 subgroups. All phylotypes display transitions in abundance that are strongly correlated with temperature and latitude. By assembling SAR11 genomes from Antarctic metagenome data, we identified specific genes, biases in gene functions and signatures of positive selection in the genomes of the polar SAR11-genomic signatures of adaptive radiation. Our data demonstrate the importance of adaptive radiation in the organism's ability to proliferate throughout the world's oceans, and describe genomic traits characteristic of different phylotypes in specific marine biomes.
    Molecular Systems Biology 01/2012; 8:595. · 11.34 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Viruses are abundant ubiquitous members of microbial communities and in the marine environment affect population structure and nutrient cycling by infecting and lysing primary producers. Antarctic lakes are microbially dominated ecosystems supporting truncated food webs in which viruses exert a major influence on the microbial loop. Here we report the discovery of a virophage (relative of the recently described Sputnik virophage) that preys on phycodnaviruses that infect prasinophytes (phototrophic algae). By performing metaproteogenomic analysis on samples from Organic Lake, a hypersaline meromictic lake in Antarctica, complete virophage and near-complete phycodnavirus genomes were obtained. By introducing the virophage as an additional predator of a predator-prey dynamic model we determined that the virophage stimulates secondary production through the microbial loop by reducing overall mortality of the host and increasing the frequency of blooms during polar summer light periods. Virophages remained abundant in the lake 2 y later and were represented by populations with a high level of major capsid protein sequence variation (25-100% identity). Virophage signatures were also found in neighboring Ace Lake (in abundance) and in two tropical lakes (hypersaline and fresh), an estuary, and an ocean upwelling site. These findings indicate that virophages regulate host-virus interactions, influence overall carbon flux in Organic Lake, and play previously unrecognized roles in diverse aquatic ecosystems.
    Proceedings of the National Academy of Sciences 03/2011; 108(15):6163-8. · 9.74 Impact Factor
  • Proceedings of the National Academy of Sciences. 01/2011; 108(15):6163-6168.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In nature, the complexity and structure of microbial communities varies widely, ranging from a few species to thousands of species, and from highly structured to highly unstructured communities. Here, we describe the identity and functional capacity of microbial populations within distinct layers of a pristine, marine-derived, meromictic (stratified) lake (Ace Lake) in Antarctica. Nine million open reading frames were analyzed, representing microbial samples taken from six depths of the lake size fractionated on sequential 3.0, 0.8 and 0.1 μm filters, and including metaproteome data from matching 0.1 μm filters. We determine how the interactions of members of this highly structured and moderately complex community define the biogeochemical fluxes throughout the entire lake. Our view is that the health of this delicate ecosystem is dictated by the effects of the polar light cycle on the dominant role of green sulfur bacteria in primary production and nutrient cycling, and the influence of viruses/phage and phage resistance on the cooperation between members of the microbial community right throughout the lake. To test our assertions, and develop a framework applicable to other microbially driven ecosystems, we developed a mathematical model that describes how cooperation within a microbial system is impacted by periodic fluctuations in environmental parameters on key populations of microorganisms. Our study reveals a mutualistic structure within the microbial community throughout the lake that has arisen as the result of mechanistic interactions between the physico-chemical parameters and the selection of individual members of the community. By exhaustively describing and modelling interactions in Ace Lake, we have developed an approach that may be applicable to learning how environmental perturbations affect the microbial dynamics in more complex aquatic systems.
    The ISME Journal 12/2010; 5(5):879-95. · 8.95 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Green sulfur bacteria (GSB) (Chlorobiaceae) are primary producers that are important in global carbon and sulfur cycling in natural environments. An almost complete genome sequence for a single, dominant GSB species ('C-Ace') was assembled from shotgun sequence data of an environmental sample taken from the O(2)-H(2)S interface of the water column of Ace Lake, Antarctica. Approximately 34 Mb of DNA sequence data were assembled into nine scaffolds totaling 1.79 Mb, representing approximately 19-fold coverage for the C-Ace composite genome. A high level ( approximately 31%) of metaproteomic coverage was achieved using matched biomass. The metaproteogenomic approach provided unique insight into the protein complement required for dominating the microbial community under cold, nutrient-limited, oxygen-limited and extremely varied annual light conditions. C-Ace shows physiological traits that promote its ability to compete very effectively with other GSB and gain dominance (for example, specific bacteriochlorophylls, mechanisms of cold adaptation) as well as a syntrophic relationship with sulfate-reducing bacteria that provides a mechanism for the exchange of sulfur compounds. As a result we are able to propose an explanation of the active biological processes promoted by cold-adapted GSB and the adaptive strategies they use to thrive under the severe physiochemical conditions prevailing in polar environments.
    The ISME Journal 03/2010; 4(8):1002-19. · 8.95 Impact Factor