Chad J Creighton

Baylor College of Medicine, Houston, Texas, United States

Are you Chad J Creighton?

Claim your profile

Publications (147)1301.03 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is one of the leading causes of cancer deaths in men. Since there are limited treatment options available for the advanced tumors, there is an urgent need for novel diagnostic tools for PCa. Prostate secretion samples (PSS) from 23 PCa and 25 benign prostate hyperplasia (BPH) patients were obtained from Urology Department of Bagcilar Educational and Research Hospital (Istanbul). MicroRNA (miRNA) profiling of eight PSS (four from BPH, four from PCa patients) were performed using microarray. Four of significantly deregulated miRNAs were further confirmed using quantitative reverse-transcription PCR (qRT-PCR). Statistical analysis was performed using Student’s t-test. ROC curves were plotted with SPSS-15.0.In this study, we aimed to identify a miRNA expression signature that could be used to distinguish PCa from BPH. MiRNA profiling of four PCa and four BPH patients with microarray revealed that miR-361-3p, -133b, and -221 were significantly downregulated and miR-203 was upregulated in PSS of PCa patients. Further qRT-PCR analysis confirmed the altered expressions of these four miRNAs in PSS of 23 PCa and 25 BPH patients. Four miRNAs, together and individually have much power (AUC;0.950) than PSA has (AUC;0.463) to discriminate PCa from BPH patients. We have shown for the first time in the literature the presence of miRNAs in the PSS. We suggest PSS as a powerful non-invasive source for evaluation of prognosis in PCa, since prostate massages can be easily applied during routine examination. Our results showed that certain differentially expressed miRNAs in PSS could be used as diagnostics markers. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 06/2014; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infertility and adverse gynecological outcomes such as preeclampsia and miscarriage represent significant female reproductive health concerns. The spatiotemporal expression of growth factors indicates that they play an important role in pregnancy. The goal of this study is to define the role of the ERBB family of growth factor receptors in endometrial function. Using conditional ablation in mice and siRNA in primary human endometrial stromal cells, we identified the epidermal growth factor receptor (Egfr) to be critical for endometrial function during early pregnancy. While ablation of Her2 or Erbb3 led to only a modest reduction in litter size, mice lacking Egfr expression are severely subfertile. Pregnancy demise occurred shortly after blastocyst implantation due to defects in decidualization including decreased proliferation, cell survival, differentiation and target gene expression. To place Egfr in a genetic regulatory hierarchy, transcriptome analyses was used to compare the gene signatures from mice with conditional ablation of Egfr, wingless-related MMTV integration site 4 (Wnt4) or boneless morphogenic protein 2 (Bmp2); revealing that not only are Bmp2 and Wnt4 key downstream effectors of Egfr, but they also regulate distinct physiological functions. In primary human endometrial stromal cells, marker gene expression, a novel high content image-based approach and phosphokinase array analysis were used to demonstrate that EGFR is a critical regulator of human decidualization. Furthermore, inhibition of EGFR signaling intermediaries WNK1 and AKT1S1, members identified in the kinase array and previously unreported to play a role in the endometrium, also attenuate decidualization. These results demonstrate that EGFR plays an integral role in establishing the cellular context necessary for successful pregnancy via the activation of intricate signaling and transcriptional networks, thereby providing valuable insight into potential therapeutic targets.
    PLoS Genetics 06/2014; 10(6):e1004451. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.
    Nature Biotechnology 06/2014; · 32.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tamoxifen has been a frontline treatment for estrogen receptor alpha (ERα)-positive breast tumors in premenopausal women. However, resistance to tamoxifen occurs in many patients. ER still plays a critical role in the growth of breast cancer cells with acquired tamoxifen resistance, suggesting that ERα remains a valid target for treatment of tamoxifen-resistant (Tam-R) breast cancer. In an effort to identify novel regulators of ERα signaling, through a small-scale siRNA screen against histone methyl modifiers, we found WHSC1, a histone H3K36 methyltransferase, as a positive regulator of ERα signaling in breast cancer cells. We demonstrated that WHSC1 is recruited to the ERα gene by the BET protein BRD3/4, and facilitates ERα gene expression. The small-molecule BET protein inhibitor JQ1 potently suppressed the classic ERα signaling pathway and the growth of Tam-R breast cancer cells in culture. Using a Tam-R breast cancer xenograft mouse model, we demonstrated in vivo anti-breast cancer activity by JQ1 and a strong long-lasting effect of combination therapy with JQ1 and the ER degrader fulvestrant. Taken together, we provide evidence that the epigenomic proteins BRD3/4 and WHSC1 are essential regulators of estrogen receptor signaling and are novel therapeutic targets for treatment of Tam-R breast cancer.Cell Research advance online publication 30 May 2014; doi:10.1038/cr.2014.71.
    Cell research. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adoptive transfer of T lymphocytes expressing a CD19-specific chimeric antigen receptor (CAR.CD19) induces complete tumor regression in patients with lymphoid malignancies. While in vivo persistence of CAR-T cells correlates with clinical responses, it remains unknown whether specific cell subsets within the CAR-T cell product correlate with their subsequent in vivo expansion and persistence. We analyzed 14 patients with B-cell malignancies infused with autologous CAR.CD19-redirected T cells expanded ex vivo using IL-2, and found that their in vivo expansion only correlated with the frequency within the infused product of a CD8(+)CD45RA(+)CCR7(+) subset, whose phenotype is closest to "T-memory stem cells". Preclinical models showed that increasing the frequency of CD8(+)CD45RA(+)CCR7(+) CAR-T cells in the infused line by culturing the cells with IL-7 and IL-15 produced greater antitumor activity of CAR-T cells mediated by increased resistance to cell death, following repetitive encounters with the antigen, whilst preserving their migration to secondary lymphoid organs. Studies are registered at, identifiers: NCT00586391 and NCT00709033.
    Blood 04/2014; · 9.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial tumor cells that have undergone epithelial-to-mesenchymal transition (EMT) are typically prone to metastasis and drug resistance and contribute to a poor clinical outcome. The transcription factor ZEB1 is a known driver of EMT, and mediators of ZEB1 represent potential therapeutic targets for metastasis suppression. Here, we have shown that phosphatidylinositol 3-kinase-targeted (PI3K-targeted) therapy suppresses metastasis in a mouse model of Kras/Tp53-mutant lung adenocarcinoma that develops metastatic disease due to high expression of ZEB1. In lung adenocarcinoma cells from Kras/Tp53-mutant animals and human lung cancer cell lines, ZEB1 activated PI3K by derepressing miR-200 targets, including amphiregulin (AREG), betacellulin (BTC), and the transcription factor GATA6, which stimulated an EGFR/ERBB2 autocrine loop. Additionally, ZEB1-dependent derepression of the miR-200 and miR-183 target friend of GATA 2 (FOG2) enhanced GATA3-induced expression of the p110α catalytic subunit of PI3K. Knockdown of FOG2, p110α, and RHEB ameliorated invasive and metastatic propensities of tumor cells. Surprisingly, FOG2 was not required for mesenchymal differentiation, suggesting that mesenchymal differentiation and invasion are distinct and separable processes. Together, these results indicate that ZEB1 sensitizes lung adenocarcinoma cells to metastasis suppression by PI3K-targeted therapy and suggest that treatments to selectively modify the metastatic behavior of mesenchymal tumor cells are feasible and may be of clinical value.
    The Journal of clinical investigation 04/2014; · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription (STAT) 3 regulates many cardinal features of cancer including cancer cell growth, apoptosis resistance, DNA damage response, metastasis, immune escape, tumor angiogenesis, the Warburg effect and oncogene addiction and has been validated as a drug target for cancer therapy. Several strategies have been used to identify agents that target Stat3 in breast cancer but none has yet entered into clinical use. We used a high-throughput fluorescence microscopy search strategy to identify compounds in a drug-repositioning library (Prestwick library) that block ligand-induced nuclear translocation of Stat3 and identified piperlongumine (PL), a natural product isolated from the fruit of the pepper Piper longum. PL inhibited Stat3 nuclear translocation, inhibited ligand-induced and constitutive Stat3 phosphorylation, and modulated expression of multiple Stat3-regulated genes. Surface plasmon resonance assay revealed that PL directly inhibited binding of Stat3 to its phosphotyrosyl peptide ligand. Phosphoprotein antibody array analysis revealed that PL does not modulate kinases known to activate Stat3 such as Janus kinases, Src kinase family members or receptor tyrosine kinases. PL inhibited anchorage-independent and anchorage-dependent growth of multiple breast cancer cell lines having increased pStat3 or total Stat3, and induced apoptosis. PL also inhibited mammosphere formation by tumor cells from patient-derived xenografts. PL's antitumorigenic function was causally linked to its Stat3-inhibitory effect. PL was non-toxic in mice up to a dose of 30 mg/kg/day for 14 days and caused regression of breast cancer cell line xenografts in nude mice. Thus, PL represents a promising new agent for rapid entry into the clinic for use in treating breast cancer, as well as other cancers in which Stat3 has a role.Oncogene advance online publication, 31 March 2014; doi:10.1038/onc.2014.72.
    Oncogene 03/2014; · 7.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We inadvertently failed to include the complete list of all coauthors for this work. The full list of authors has now been added and the Authors' contributions and Competing interests section modified.
    Journal of Translational Medicine 03/2014; 12(1):67. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.
    Development 03/2014; · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent data from human and mouse studies strongly support an indispensable role for Steroid Receptor Coactivator-2 (SRC-2)--a member of the p160/SRC family of coregulators--in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) (control)) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) (SRC-2 depleted)) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (~13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2 dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.
    Biology of Reproduction 02/2014; · 4.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The REGγ-proteasome serves as a short-cut for the destruction of certain intact mammalian proteins in the absence of ubiquitin- and ATP. The biological roles of the proteasome activator REGγ are not completely understood. Here we demonstrate that REGγ controls degradation of protein kinase A catalytic subunit-α (PKAca) both in primary human umbilical vein endothelial cells (HUVECs) and mouse embryonic fibroblast cells (MEFs). Accumulation of PKAca in REGγ-deficient HUVECs or MEFs results in phosphorylation and nuclear exclusion of the transcription factor FoxO1, indicating that REGγ is involved in preserving FoxO1 transcriptional activity. Consequently, VEGF-induced expression of the FoxO1 responsive genes, VCAM-1 and E-Selectin, was tightly controlled by REGγ in a PKA dependent manner. Functionally, REGγ is crucial for the migration of HUVECs. REGγ(-/-) mice display compromised VEGF-instigated neovascularization in cornea and aortic ring models. Implanted matrigel plugs containing VEGF in REGγ(-/-) mice induced fewer capillaries than in REGγ(+/+) littermates. Taken together, our study identifies REGγ as a novel angiogenic factor that plays an important role in VEGF-induced expression of VCAM-1 and E-Selectin by antagonizing PKA signaling. Identification of the REGγ-PKA-FoxO1 pathway in endothelial cells (ECs) provides another potential target for therapeutic intervention in vascular diseases.
    Journal of Molecular and Cellular Cardiology 02/2014; · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac dysfunction is the second leading cause of death in myotonic dystrophy type 1 (DM1), primarily because of arrhythmias and cardiac conduction defects. A screen of more than 500 microRNAs (miRNAs) in a DM1 mouse model identified 54 miRNAs that were differentially expressed in heart. More than 80% exhibited downregulation toward the embryonic expression pattern and showed a DM1-specific response. A total of 20 of 22 miRNAs tested were also significantly downregulated in human DM1 heart tissue. We demonstrate that many of these miRNAs are direct MEF2 transcriptional targets, including miRNAs for which depletion is associated with arrhythmias or fibrosis. MEF2 protein is significantly reduced in both DM1 and mouse model heart samples, and exogenous MEF2C restores normal levels of MEF2 target miRNAs and mRNAs in a DM1 cardiac cell culture model. We conclude that loss of MEF2 in DM1 heart causes pathogenic features through aberrant expression of both miRNA and mRNA targets.
    Cell Reports 01/2014; · 7.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa.
    Neoplasia. 01/2014; 16(5):390–402.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prostate epithelial lineage hierarchy remains inadequately defined. Recent lineage-tracing studies have implied the existence of prostate luminal epithelial progenitors with extensive regenerative capacity. However, this capacity has not been demonstrated in prostate stem cell activity assays, probably owing to the strong susceptibility of luminal progenitors to anoikis. Here we show that constitutive expression of Notch1 intracellular domain impairs secretory function of mouse prostate luminal cells, suppresses anoikis of luminal epithelial cells by augmenting NF-κB activity independent of Hes1, stimulates luminal cell proliferation by potentiating PI3K-AKT signalling, and rescues the capacities of the putative prostate luminal progenitors for unipotent differentiation in vivo and short-term self-renewal in vitro. Epithelial cell autonomous AR signalling is dispensable for the Notch-mediated effects. As Notch activity is increased in prostate cancers, and anoikis resistance is a hallmark for metastatic cancer cells, this study suggests a pro-metastatic function of Notch signalling during prostate cancer progression.
    Nature Communications 01/2014; 5:4416. · 10.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCa) is currently the most frequently diagnosed malignancy in the western countries. It is more prevalent in older men with 75% of the incident cases above 65 years old. After radical prostatectomy, approximately 30% of men develop clinical recurrence with elevated serum prostate-specific antigen levels. Therefore, it is important to unravel the molecular mechanisms underlying PCa progression to develop novel diagnostic/therapeutic approaches. In this study, it is aimed to compare the microRNA (miRNA) profile of recurrent and non-recurrent prostate tumor tissues to explore the possible involvement of miRNAs in PCa progression. Total RNA from 41 recurrent and 41 non-recurrent PCa tissue samples were used to investigate the miRNA signature in PCa specimens. First of all, 20 recurrent and 20 non-recurrent PCa samples were profiled using miRNA microarray chips. Of the differentially expressed miRNAs, miR-1, miR-133b and miR-145* were selected for further validation with qRT-PCR in a different set of 21 recurrent and 21 non-recurrent PCa samples. Data were statistically analyzed using two-sided Student's t-test, Pearson Correlation test, Receiver operating characteristic analysis. Our results demonstrated that miR-1 and mir-133b have been significantly downregulated in recurrent PCa specimens in comparison to non-recurrent PCa samples and have sufficient power to distinguish recurrent specimens from non-recurrent ones on their own. Here, we report that the relative expression of miR-1 and mir-133b have been significantly reduced in recurrent PCa specimens in comparison to non-recurrent PCa samples, which can serve as novel biomarkers for prediction of PCa progression.
    PLoS ONE 01/2014; 9(6):e98675. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the TP53 tumor suppressor gene occur in half of all human cancers, indicating its critical importance in inhibiting cancer development. Despite extensive studies, the mechanisms by which mutant p53 enhances tumor progression remain only partially understood. Here, using data from The Cancer Genome Atlas (TCGA), genomic and transcriptomic analyses were performed on 2256 tumors from ten human cancer types. We show that tumors with TP53 mutations have altered gene expression profiles compared to tumors retaining two wildtype TP53 alleles. Among 113 known p53 upregulated target genes identified from cell culture assays, ten were consistently upregulated in at least 8 of 10 cancer types that retain both copies of wildtype TP53. RPS27L, CDKN1A (p21(CIP1) ), and ZMAT3 were significantly upregulated in all ten cancer types retaining wildtype TP53. Using this p53-based expression analysis as a discovery tool, we used cell-based assays to identify five novel p53 target genes from genes consistently upregulated in wildtype p53 cancers. Global gene expression analyses revealed that cell cycle regulatory genes and transcription factors E2F1, MYBL2, and FOXM1 were disproportionately upregulated in many TP53 mutant cancer types. Finally, over 93% of tumors with a TP53 mutation exhibited greatly reduced wildtype p53 messenger expression due to loss of heterozygosity or copy neutral loss of heterozygosity, supporting the concept of p53 as a recessive tumor suppressor. The data indicate that tumors with wildtype TP53 retain some aspects of p53-mediated growth inhibitory signaling through activation of p53 target genes and suppression of cell cycle regulatory genes.
    The Journal of Pathology 12/2013; · 7.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because of its high expression on various types of tumors and its restricted distribution in normal tissues, chondroitin sulfate proteoglycan-4 (CSPG4) represents an attractive target for the antibody-based therapy of several solid tumors. We tested whether T cells transduced with a CSPG4-specific chimeric antigen receptor (CAR) inhibited the growth of CSPG4-expressing tumor cells both in vitro and in vivo. We first independently validated by immunohistochemistry (IHC) the expression of CSPG4 in an extensive panel of tumor arrays and normal tissues as well as queried public gene expression profiling datasets of human tumors. We constructed a second generation CSPG4-specific CAR also encoding the CD28 costimulatory endodomain (CAR.CSPG4). We then evaluated human T lymphocytes expressing this CAR for their ex vivo and in vivo anti-tumor activity against a broad panel of solid tumors. IHC showed that CSPG4 is highly expressed in melanoma, breast cancer, head and neck squamous cell carcinoma (HNSCC) and mesothelioma. In addition, in silico analysis of microarray expression data identified other important potential tumors expressing this target, including glioblastoma, clear cell renal carcinoma and sarcomas. T lymphocytes genetically modified with a CSPG4-CAR controlled tumor growth in vitro and in vivo in NSG mice engrafted with human melanoma, HNSCC and breast carcinoma cell lines. CAR.CSPG4-redirected T cells should provide an effective treatment modality for a variety of solid tumors.
    Clinical Cancer Research 12/2013; · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reactive stroma surrounding tumor lesions performs critical roles ranging from supporting tumor cell proliferation to inducing tumorigenesis and metastasis. Therefore, it is critical to understand the cellular components and signaling control mechanisms that underlay the etiology of reactive stroma. Previous studies have individually implicated fibroblast growth factor receptor 1 (FGFR1) and canonical WNT/β-catenin signaling in prostate cancer progression and the initiation and maintenance of a reactive stroma; however, both pathways are frequently found co-activated in cancer tissue. Using autochthonous transgenic mouse models for inducible FGFR1 (JOCK1) and prostate-specific and ubiquitously expressed inducible β-catenin (Pro-Cat and Ubi-Cat, respectively) and bigenic crosses between these lines (Pro-Cat × JOCK1 and Ubi-Cat × JOCK1), we describe WNT-induced synergistic acceleration of FGFR1-driven adenocarcinoma, associated with a pronounced fibroblastic reactive stroma activation surrounding prostatic intraepithelial neoplasia (mPIN) lesions found both in situ and reconstitution assays. Both mouse and human reactive stroma exhibited increased transforming growth factor-beta (TGF-β) signaling adjacent to pathologic lesions likely contributing to invasion. Furthermore, elevated stromal TGF-β signaling was associated with higher Gleason scores in archived human biopsies, mirroring murine patterns. Our findings establish the importance of the FGFR1-WNT-TGF-β signaling axes as driving forces behind reactive stroma in aggressive prostate adenocarcinomas, deepening their relevance as therapeutic targets.
    Cancer Research 12/2013; · 8.65 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice). In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC) and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3' UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization.
    PLoS Genetics 11/2013; 9(11):e1003863. · 8.52 Impact Factor

Publication Stats

4k Citations
1,301.03 Total Impact Points


  • 2007–2014
    • Baylor College of Medicine
      • • Department of Pathology & Immunology
      • • Department of Molecular & Cellular Biology
      • • Department of Medicine
      Houston, Texas, United States
  • 2013
    • Yeditepe Üniversitesi Hastanesi
      İstanbul, Istanbul, Turkey
    • Andalusian Human Genome Sequencing Centre
      Hispalis, Andalusia, Spain
  • 2007–2013
    • University of Texas MD Anderson Cancer Center
      • • Department of Surgical Oncology
      • • Department of Thoracic Head Neck Medical Oncology
      Houston, TX, United States
  • 2012
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 2011
    • University of Texas Southwestern Medical Center
      Dallas, Texas, United States
    • Georgia Health Sciences University
      Augusta, Georgia, United States
  • 2010
    • Molecular and Cellular Biology Program
      Seattle, Washington, United States
  • 2009
    • Gibbs Cancer Center
      Spartanburg, South Carolina, United States
  • 2008
    • University of Kentucky
      • Department of Medicine
      Lexington, KY, United States
  • 2006–2007
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 2005
    • Michigan Institute of Urology
      Detroit, Michigan, United States
  • 2003–2005
    • University of Michigan
      • • Department of Pathology
      • • Division of Pediatric Genetics
      Ann Arbor, MI, United States