Jane Jung

Chonnam National University, Yeoju, Gyeonggi, South Korea

Are you Jane Jung?

Claim your profile

Publications (6)26.63 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Notch signaling involves the proteolytic cleavage of the transmembrane Notch receptor after binding to its transmembrane ligands. Jagged-1 also undergoes proteolytic cleavage by gamma-secretase and releases an intracellular fragment. In this study, we have demonstrated that the Jagged-1 intracellular domain (JICD) inhibits Notch1 signaling via a reduction in the protein stability of the Notch1 intracellular domain (Notch1-IC). The formation of the Notch1-IC-RBP-Jk-Mastermind complex is prevented in the presence of JICD, via a physical interaction. Furthermore, JICD accelerates the protein degradation of Notch1-IC via Fbw7-dependent proteasomal pathway. These results indicate that JICD functions as a negative regulator in Notch1 signaling via the promotion of Notch1-IC degradation.
    Experimental Cell Research 07/2011; 317(17):2438-46. · 3.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD suppresses Notch1 transcriptional activity by the dissociation of the Notch1-IC-RBP-Jk complex after processing by γ-secretase. Notch1-IC is capable of forming a trimeric complex with Fbw7 and AICD, and AICD enhances the protein degradation of Notch1-IC through an Fbw7-dependent proteasomal pathway. AICD downregulates the levels of RBP-Jk protein through the lysosomal pathway. AICD-mediated degradation is involved in the preferential degradation of non-phosphorylated RBP-Jk. Collectively, our results demonstrate that AICD functions as a negative regulator in Notch1 signaling through the promotion of Notch1-IC and RBP-Jk protein degradation.
    Journal of Cell Science 06/2011; 124(Pt 11):1831-43. · 5.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Notch signaling involves the proteolytic cleavage of the transmembrane Notch receptor after binding to its transmembrane ligands. The Delta-like ligand 1 also undergoes proteolytic cleavage upon Notch binding, resulting in the production of a free intracellular domain. In this study, we have demonstrated that the Delta-like 1 intracellular domain (Dll1-IC) specifically binds to Notch1-IC in the nucleus, thereby disrupting the association of the Notch1-IC-RBP-Jk-MAM transcription activator complex. Additionally, the Notch1-mediated blockage of the induction of MyoD is abolished by the co-expression of Dll1-IC. Collectively, our results show that Dll1-IC functions as a negative regulator in Notch signaling via the disruption of the Notch1-IC-RBP-Jk complex.
    Molecules and Cells 06/2011; 32(2):161-5. · 2.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Notch1 genes encode receptors for a signaling pathway that regulates cell growth and differentiation in various contexts, but the role of Notch1 signaling in osteogenesis is not well defined. Notch1 controls osteoblast differentiation by affecting Runx2, but the question arises whether normal osteoblastic differentiation can occur regardless of the presence of Notch1. In this study, we observed the downregulation of Notch1 signaling during osteoblastic differentiation. BMPR-IB/Alk6-induced Runx2 proteins reduced Notch1 activity to a marked degree. Accumulated Runx2 suppressed Notch1 transcriptional activity by dissociating the Notch1-IC-RBP-Jk complex. Using deletion mutants, we also determined that the N-terminal domain of Runx2 was crucial to the binding and inhibition of the N-terminus of the Notch1 intracellular domain. Notably, upregulation of the Runx2 protein level paralleled reduced expression of Hes1, which is a downstream target of Notch1, during osteoblast differentiation. Collectively, our data suggest that Runx2 is an inhibitor of the Notch1 signaling pathway during normal osteoblast differentiation.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 02/2011; 26(2):317-30. · 6.04 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Notch is a transmembrane protein that acts as a transcriptional factor in the Notch signaling pathway for cell survival, cell death and cell differentiation. Notch1 and Fbw7 mutations both lead the activation of the Notch1 pathway and are found in the majority of patients with the leukemia T-ALL. However, little is known about the mechanisms and regulators that are responsible for attenuating the Notch signaling pathway through Fbw7. Here, we report that the serum- and glucocorticoid-inducible protein kinase SGK1 remarkably reduced the protein stability of the active form of Notch1 through Fbw7. The protein level and transcriptional activity of the Notch1 intracellular domain (Notch1-IC) were higher in SGK1-deficient cells than in SGK1 wild-type cells. Notch1-IC was able to form a trimeric complex with Fbw7 and SGK1, thereby SGK1 enhanced the protein degradation of Notch1-IC via a Fbw7-dependent proteasomal pathway. Furthermore, activated SGK1 phosphorylated Fbw7 at serine 227, an effect inducing Notch1-IC protein degradation and ubiquitylation. Moreover, accumulated dexamethasone-induced SGK1 facilitated the degradation of Notch1-IC through phosphorylation of Fbw7. Together our results suggest that SGK1 inhibits the Notch1 signaling pathway via phosphorylation of Fbw7.
    Journal of Cell Science 01/2011; 124(Pt 1):100-12. · 5.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: DJ-1 has been reported as a gene linked to early onset familial Parkinson's disease, and is functionally involved in transcriptional regulation and oxidative stress-induced cell death. To understand the role of DJ-1 in cellular stress, this study investigated DJ-1's effect on stress-activated protein kinase signaling and H(2)O(2)-induced activation of apoptosis signal-regulating kinase 1 (ASK1). According to the results, the overexpression of DJ-1 inhibited H(2)O(2)-induced activation of ASK1 as well as the activation of downstream kinases in the p38 mitogen-activated protein kinase (MAPK) signaling cascade. The results of both in vivo binding and kinase studies have revealed that ASK1 is the direct target of DJ-1, whereas it has shown no effect on either MKK3 or p38. DJ-1 blocked both the homo-oligomerization of ASK1 and inhibited ASK1 activity. Taken together, our data strongly suggest that DJ-1, by directly inhibiting ASK1, may act as a negative regulator in ASK1 signaling cascades.
    Journal of Cellular Biochemistry 03/2010; 110(1):229-37. · 3.06 Impact Factor