Roderick G Walker

University of Glasgow, Glasgow, SCT, United Kingdom

Are you Roderick G Walker?

Claim your profile

Publications (3)10.14 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New drugs are urgently needed for the treatment of tropical parasitic diseases such as leishmaniasis and human African trypanosomiasis (HAT). This work involved a high-throughput screen of a focussed kinase set of ~3400 compounds to identify potent and parasite-selective inhibitors of an enzymatic Leishmania CRK3-cyclin 6 complex. The aim of this study is to provide chemical validation that Leishmania CRK3-CYC6 is a drug target. Eight hit series were identified, of which four were followed up. The optimisation of these series using classical SAR studies afforded low-nanomolar CRK3 inhibitors with significant selectivity over the closely related human cyclin dependent kinase CDK2.
    ChemMedChem 09/2011; 6(12):2214-24. · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmania species are parasitic protozoa that have a tightly controlled cell cycle, regulated by cyclin-dependent kinases (CDKs). Cdc2-related kinase 3 (CRK3), an essential CDK in Leishmania and functional orthologue of human CDK1, can form an active protein kinase complex with Leishmania cyclins CYCA and CYC6. Here we describe the identification and synthesis of specific small molecule inhibitors of bacterially expressed Leishmania CRK3:CYC6 using a high throughput screening assay and iterative chemistry. We also describe the biological activity of the molecules against Leishmania parasites. In order to obtain an active Leishmania CRK3:CYC6 protein kinase complex, we developed a co-expression and co-purification system for Leishmania CRK3 and CYC6 proteins. This active enzyme was used in a high throughput screening (HTS) platform, utilising an IMAP fluorescence polarisation assay. We carried out two chemical library screens and identified specific inhibitors of CRK3:CYC6 that were inactive against the human cyclin-dependent kinase CDK2:CycA. Subsequently, the best inhibitors were tested against 11 other mammalian protein kinases. Twelve of the most potent hits had an azapurine core with structure activity relationship (SAR) analysis identifying the functional groups on the 2 and 9 positions as essential for CRK3:CYC6 inhibition and specificity against CDK2:CycA. Iterative chemistry allowed synthesis of a number of azapurine derivatives with one, compound 17, demonstrating anti-parasitic activity against both promastigote and amastigote forms of L. major. Following the second HTS, 11 compounds with a thiazole core (active towards CRK3:CYC6 and inactive against CDK2:CycA) were tested. Ten of these hits demonstrated anti-parasitic activity against promastigote L. major. The pharmacophores identified from the high throughput screens, and the derivatives synthesised, selectively target the parasite enzyme and represent compounds for future hit-to-lead synthesis programs to develop therapeutics against Leishmania species. Challenges remain in identifying specific CDK inhibitors with both target selectivity and potency against the parasite.
    PLoS Neglected Tropical Diseases 01/2011; 5(4):e1033. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activity of cyclin-dependent kinases (CDKs), which are key regulators of the eukaryotic cell cycle, is regulated through post-translational mechanisms, including binding of a cyclin and phosphorylation. Previously studies have shown that Leishmania mexicana CRK3 is an essential CDK that is a functional homologue of human CDK1. In this study, recombinant histidine tagged L. mexicana CRK3 and the cyclin CYCA were combined in vitro to produce an active histone H1 kinase that was inhibited by the CDK inhibitors, flavopiridol and indirubin-3'-monoxime. Protein kinase activity was observed in the absence of phosphorylation of the T-loop residue Thr178, but increased 5-fold upon phosphorylation by the CDK activating kinase Civ1 of Saccharomyces cerevisiae. Seven recombinant L. major CRKs (1, 2, 3, 4, 6, 7 and 8) were also expressed and purified, none of which were active as monomers. Moreover, only CRK3 was phosphorylated by Civ1. HA-tagged CYCA expressed in L. major procyclic promastigotes was co-precipitated with CRK3 and exhibited histone H1 kinase activity. These data indicate that in Leishmania CYCA interacts with CRK3 to form an active protein kinase, confirm the conservation of the regulatory mechanisms that control CDK activity in other eukaryotes, but identifies biochemical differences to human CDK1.
    Molecular and Biochemical Parasitology 03/2010; 171(2):89-96. · 2.73 Impact Factor