Eleana Laws

Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States

Are you Eleana Laws?

Claim your profile

Publications (1)5.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeostatic control of the immune system involves mechanisms that ensure the self-tolerance, survival and quiescence of hematopoietic-derived cells. In this study, we demonstrate that the GTPase of immunity associated protein (Gimap)5 regulates these processes in lymphocytes and hematopoietic progenitor cells. As a consequence of a recessive N-ethyl-N-nitrosourea-induced germline mutation in the P-loop of Gimap5, lymphopenia, hepatic extramedullary hematopoiesis, weight loss, and intestinal inflammation occur in homozygous mutant mice. Irradiated fetal liver chimeric mice reconstituted with Gimap5-deficient cells lose weight and become lymphopenic, demonstrating a hematopoietic cell-intrinsic function for Gimap5. Although Gimap5-deficient CD4(+) T cells and B cells appear to undergo normal development, they fail to proliferate upon Ag-receptor stimulation although NF-kappaB, MAP kinase and Akt activation occur normally. In addition, in Gimap5-deficient mice, CD4(+) T cells adopt a CD44(high)CD62L(low)CD69(low) phenotype and show reduced IL-7ralpha expression, and T-dependent and T-independent B cell responses are abrogated. Thus, Gimap5-deficiency affects a noncanonical signaling pathway required for Ag-receptor-induced proliferation and lymphocyte quiescence. Antibiotic-treatment or the adoptive transfer of Rag-sufficient splenocytes ameliorates intestinal inflammation and weight loss, suggesting that immune responses triggered by microbial flora causes the morbidity in Gimap5-deficient mice. These data establish Gimap5 as a key regulator of hematopoietic integrity and lymphocyte homeostasis.
    The Journal of Immunology 02/2010; 184(7):3743-54. DOI:10.4049/jimmunol.0903164 · 5.36 Impact Factor