Taye Zegeye

Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada

Are you Taye Zegeye?

Claim your profile

Publications (4)10.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oat (Avena sativa L.) productivity is affected by crown rust (Puccinia coronata f. sp. avenae) and stem rust (Puccinia graminis f. sp. avenae) worldwide. Control of these diseases has been through the use of host resistance genes, but frequent changes in pathogen virulence provide a continuing threat to oat production. Wild oat species have been a major source of diversity for the improvement of cultivated oat. Many rust resistance genes, as well as genes providing resistance to other major oat diseases, have been found in wild oat species as well as in landraces and cultivated species and have been utilised in plant breeding. However, the transfer of resistance from wild diploid and tetraploid species to cultivated hexaploid oat is difficult because their chromosomes do not pair readily. Nevertheless, many improved oat cultivars possess alien-derived rust resistance genes and occupy considerable acreage in the major oat-producing regions of the world. This chapter reviews the major developments and their impacts on oat breeding, specifically through alien gene transfer from wild and related species
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem rust, caused by Puccinia graminis f. sp. tritici, is a devastating disease of wheat. The emergence of race TTKSK (Ug99) and new variants in Africa threatens wheat production worldwide. The best method of controlling stem rust is to deploy effective resistance genes in wheat cultivars. Few stem rust resistance (Sr) genes derived from the primary gene pool of wheat confer resistance to TTKSK. Norin 40, which carries Sr42, is resistant to TTKSK and variants TTKST and TTTSK. The goal of this study was to elucidate the inheritance of resistance to Ug99 in Norin 40 and map the Sr gene(s). A doubled haploid (DH) population of LMPG-6/Norin 40 was evaluated for resistance to the race TTKST. Segregation of 248 DH lines fitted a 1:1 ratio (χ (2) 1:1= 0.58, p = 0.45), indicating a single gene in Norin 40 conditioned resistance to Ug99. This was confirmed by an independent F(2:3) population also derived from the cross LMPG-6/Norin 40 where a 1:2:1 ratio (χ (2)1:2:1 = 0.69, p = 0.71) was observed following the inoculation with race TTKSK. Mapping with DNA markers located this gene to chromosome 6DS, the known location of Sr42. PCR marker FSD_RSA co-segregated with Sr42, and simple sequence repeat (SSR) marker BARC183 was closely linked (0.5 cM) to Sr42. A previous study found close linkage between FSD_RSA and SrCad, a temporarily designated gene that also confers resistance to Ug99, thus Sr42 may be the same gene or allelic. Marker FSD_RSA is suitable for marker-assisted selection (MAS) in wheat breeding programs to improve stem rust resistance, including Ug99.
    Theoretical and Applied Genetics 05/2012; 125(4):817-24. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.) has re-emerged as a threat to wheat production with the evolution of new pathogen races, namely TTKSK (Ug99) and its variants, in Africa. Deployment of resistant wheat cultivars has provided long-term control of stem rust. Identification of new resistance genes will contribute to future cultivars with broad resistance to stem rust. The related Canadian cultivars Peace and AC Cadillac show resistance to Ug99 at the seedling stage and in the field. The purpose of this study was to elucidate the inheritance and genetically map resistance to Ug99 in these two cultivars. Two populations were produced, an F(2:3) population from LMPG/AC Cadillac and a doubled haploid (DH) population from RL6071/Peace. Both populations showed segregation at the seedling stage for a single stem rust resistance (Sr) gene, temporarily named SrCad. SrCad was mapped to chromosome 6DS in both populations with microsatellite markers and a marker (FSD_RSA) that is tightly linked to the common bunt resistance gene Bt10. FSD_RSA was the closest marker to SrCad (≈ 1.6 cM). Evaluation of the RL6071/Peace DH population and a second DH population, AC Karma/87E03-S2B1, in Kenya showed that the combination of SrCad and leaf rust resistance gene Lr34 provided a high level of resistance to Ug99-type races in the field, whereas in the absence of Lr34 SrCad conferred moderate resistance. A survey confirmed that SrCad is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivars. While further study is needed to determine the relationship between SrCad and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars.
    Theoretical and Applied Genetics 01/2011; 122(1):143-9. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New races of wheat stem rust, namely TTKSK (Ug99) and its variants, pose a threat to wheat production in the regions where they are found. The accession of the wheat cultivar Webster (RL6201) maintained at the Cereal Research Centre in Winnipeg, Canada, shows resistance to TTKSK and other races of stem rust. The purpose of this study was to study the inheritance of seedling resistance to stem rust in RL6201 and genetically map the resistance genes using microsatellite (SSR) markers. A population was produced by crossing the stem rust susceptible line RL6071 with Webster. The F(2) and F(3) were tested with TPMK, a stem rust race native to North America. The F(3) was also tested with TTKSK. Two independently assorting genes were identified in RL6201. Resistance to TPMK was conferred by Sr30, which was mapped with microsatellites on chromosome 5DL. The second gene, temporarily designated SrWeb, conferred resistance to TTKSK. SrWeb was mapped to chromosome 2BL using SSR markers. Comparison with previous genetic maps showed that SrWeb occupies a locus near Sr9. Further analysis will be required to determine if SrWeb is a new gene or an allele of a previously identified gene.
    Theoretical and Applied Genetics 02/2010; 121(1):65-9. · 3.66 Impact Factor