Prashanth S Jois

Indian Institute of Science, Bengalore, State of Karnataka, India

Are you Prashanth S Jois?

Claim your profile

Publications (3)10.51 Total impact

  • Prashanth Sirigeri Jois, Puttaswamy Manjunath
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine BSP5 belongs to the Binder of SPerm (BSP) family. BSP5 plays a role in the bovine sperm capacitation by promoting cholesterol and phospholipid efflux. The variable N-terminal part in the BSP proteins is the uncharacterized region with no known function. Full-length, N-terminal part, and individual fibronectin type II domains of bovine BSP5 were cloned, expressed and purified from Escherichia coli. His-S tagged N-terminal part showed large variation in migration on SDS-PAGE in comparison to other constructs. Using mass spectrometry it was demonstrated that the His-S-N-terminal part has the expected molecular mass (13 kDa). The recombinant N-terminal part was sensitive to E. coli endogenous proteases during purification. Denaturing purification involving boiling lysis of cells was carried out, as the protein was thermostable. The His-S-N-terminal part lacked structure as determined by CD analysis. Bioinformatics analyses confirmed that the N-terminal part of bovine BSP5 is intrinsically disordered. In addition, bioinformatics analysis indicated that rabbit BSP and multiple forms of BSP proteins of bovine and equine species possess partially or completely disordered N-terminus. The conservation of disorder at the N-terminus in BSP members belonging to different species suggests a role in biological process such as sperm capacitation and/or sperm-egg interactions.
    Biochemical and Biophysical Research Communications 03/2010; 394(4):1036-41. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BSP proteins and their homologs are a family of structurally related proteins characterized by the presence of tandem fibronectin type II domains. In the bovine species, BSP proteins were shown to be involved in sperm capacitation, a posttesticular maturation event necessary for sperm to acquire the ability to fertilize an oocyte. Recently, many new genes from this family have been discovered in numerous mammalian species. However, inconsistency in the nomenclature is creating much confusion. In light of the rapid growth of the BSP superfamily of proteins, we propose a new nomenclature in collaboration with the HUGO Gene Nomenclature Committee.
    Biology of Reproduction 11/2008; 80(3):394-7. · 3.45 Impact Factor
  • Prashanth S Jois, Nagaraj Madhu, Desirazu N Rao
    [Show abstract] [Hide abstract]
    ABSTRACT: Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of 5'-CAGCAG-3'. The loss of enzyme activity was accompanied by an increase in absorbance at 240 nm. A difference spectrum of modified versus native enzyme shows the formation of N-carbethoxyhistidine that is diminished by hydroxylamine. This, along with other experiments, strongly suggests that the inactivation of the enzyme by DEPC was specific for histidine residues. Substrate protection experiments show that pre-incubating the methylase with DNA was able to protect the enzyme from DEPC inactivation. Site-directed mutagenesis experiments in which the 15 histidine residues in the enzyme were replaced individually with alanine corroborated the chemical modification studies and established the importance of His-335 in the methylase activity. No gross structural differences were detected between the native and H335A mutant MTases, as evident from CD spectra, native PAGE pattern or on gel filtration chromatography. Replacement of histidine with alanine residue at position 335 results in a mutant enzyme that is catalytically inactive and binds to DNA more tightly than the wild-type enzyme. Thus we have shown in the present study, through a combination of chemical modification and site-directed mutagenesis experiments, that His-335 plays an essential role in DNA methylation catalysed by M.EcoP15I.
    Biochemical Journal 04/2008; 410(3):543-53. · 4.78 Impact Factor