Are you Yvonne van der Does?

Claim your profile

Publications (2)9.11 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: beta-Carotene biochemistry is a fundamental process in mammalian biology. Aberrations either through malnutrition or potentially through genetic variation may lead to vitamin A deficiency, which is a substantial public health burden. In addition, understanding the genetic regulation of this process may enable bovine improvement. While many bovine QTL have been reported, few of the causative genes and mutations have been identified. We discovered a QTL for milk beta-carotene and subsequently identified a premature stop codon in bovine beta-carotene oxygenase 2 (BCO2), which also affects serum beta-carotene content. The BCO2 enzyme is thereby identified as a key regulator of beta-carotene metabolism.
    Genetics 05/2009; 182(3):923-6. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical studies have shown that total body fat mass is related to both bone density and fracture risk and that fat ingestion reduces bone turnover. These effects are at least partially mediated by endocrine mechanisms, but it is possible that lipids might act directly on bone. We assessed the effects of broad fractions of milk lipids in osteoblasts, bone marrow, and neonatal mouse calvariae. Several milk fractions and their hydrolysates inhibited osteoclastogenesis in bone marrow cultures, so we assessed the effects of free fatty acids in this model. Saturated fatty acids (0.1-10 microg/ml) inhibited osteoclastogenesis in bone marrow cultures and RAW264.7 cells. This effect was maximal for C14:0 to C18:0 fatty acids. The introduction of greater than 1 double bond abrogated this effect; omega3 and omega6 fatty acids had comparable low activity. Osteoblast proliferation was modestly increased by the antiosteoclastogenic compounds, ruling out a nonspecific toxic effect. Active fatty acids did not consistently change expression of receptor activator of nuclear factor-kappaB ligand or osteoprotegerin in osteoblastic cells nor did they affect the activity of key enzymes in the mevalonate pathway. However, receptors known to bind fatty acids were found to be expressed in osteoblastic (GPR120) and osteoclastic (GPR40, 41, 43, 120) cells. A synthetic GPR 40/120 agonist mimicked the inhibitory effects of fatty acids on osteoclastogenesis. These findings provide a novel link between lipid and bone metabolism, which might contribute to the positive relationship between adiposity and bone density as well as provide novel targets for pharmaceutical and nutriceutical development.
    Endocrinology 07/2008; 149(11):5688-95. · 4.72 Impact Factor