Yan-Jun Ma

China Pharmaceutical University, Nan-ching-hsü, Jiangxi Sheng, China

Are you Yan-Jun Ma?

Claim your profile

Publications (4)16.52 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In response to ionizing irradiation and certain chemotherapeutic agents, dying tumor cells elicit a potent anticancer immune response. However, the potential effect of wogonin (5,7-dihydroxy-8-methoxyflavone) on cancer immunogenicity has not been studied. Here we demonstrated for the first time that wogonin elicits a potent antitumor immunity effect by inducing the translocation of calreticulin (CRT) and Annexin A1 to cell plasma membrane as well as the release of high-mobility group protein 1 (HMGB1) and ATP. Signal pathways involved in this process were studied. We found that wogonin-induced reactive oxygen species (ROS) production causes an endoplasmic reticulum (ER) stress response, including the phosphorylation of PERK (PKR-like endoplasmic reticulum kinase)/PKR (protein kinase R) and eIF2α (eukaryotic initiation factor 2α), which served as upstream signal for the activation of phosphoinositide 3-kinase (PI3K)/AKT, inducing calreticulin (CRT)/Annexin A1 cell membrane translocation. P22/CHP, a Ca(2+)-binding protein, was associated with CRT and was required for CRT translocation to cell membrane. The releases of HMGB1 and ATP from wogonin treated MFC cells, alone or together with other possible factors, activated dendritic cells and induced cytokine releases. In vivo study confirmed that immunization with wogonin-pretreated tumor cells vaccination significantly inhibited homoplastic grafted gastric tumor growth in mice and a possible inflammatory response was involved. In conclusion, the activation of PI3K pathway elicited by ER stress induced CRT/Annexin A1 translocation ("eat me" signal) and HMGB1 release, mediating wogonin-induced immunity of tumor cell vaccine. This indicated that wogonin is a novel effective candidate of immunotherapy against gastric tumor.
    PLoS ONE 12/2012; 7(12):e50811. DOI:10.1371/journal.pone.0050811 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: P277 is a peptide derived from the HSP60 regions, have potent immunological effect on insulin-dependent diabetes mellitus (IDDM) and its phase III clinical trials are currently under investigation. However, we recently discovered a positive correlation between anti-P277 autoantibodies and the presence of endothelial cells damage in inducing vascular leak syndrome. Therefore, the aim of our study was to demonstrate the critical peptide epitope of P277 to IDDM and to highlight the effects of this peptide therapy on inflammation of the islets. Groups of 4-week old female non-obese diabetic (NOD) mice were immunized one time every three weeks for three times with a residue of P277, showing a significant effect of down-regulating immunity to P277 protein and preventing the development of IDDM. Immunologic results including the suppression of T-cell proliferation, the increase of interleukin-10 (IL-10) production and reduction of interferon-γ (IFN-γ) production caused immune tolerance to P277. Hence, a functional role of the key epitope in P277 peptide capable of preventing IDDM is suggested, which could be modified to develop a novel safe and effective peptide vaccine against IDDM by reconstructing P277 in the further studies.
    International immunopharmacology 04/2011; 11(9):1298-302. DOI:10.1016/j.intimp.2011.04.012 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify and compare the features of stem like cells in human glioblastoma cell lines U251, U87MG, A172 with primary cultured glioblastoma stem cells, the ratio of CD133+ cells, the ability of tumor sphere formation, and self-renewing capacity of U251, U87MG, A172 cells in serum free medium plus EGF, bFGF and B27 supplement were detected. The results suggested that there might be more cancer stem like cells in U251 cells compared with others. CD133+ cells enriched in SP cells and in U251 cells cultured with the serum free medium. They expressed the neural stem cell markers CD133 and Nestin, but lacked of neuronal and astrocyte marker MAP2, beta-III tubulin and GFAP. They could apparently generate both neurons and glial cells after serum retrieved in vitro. Gli1, Bmi1, Notch2 and PTEN were also found expressed highly in them. Moreover, CD133+ cells were more resistant to hypoxia, irradiations and some chemotherapeutics than CD133-cells. So we suggested that glioblastoma stem like cells were existed in CD133+ cells in U251 cell line with characteristics of self-renew and generation of an unlimited progeny of non-tumorigenic cells. Molecular and functional characterization of such a tumorigenic population may be exploited in the development of novel cancer therapeutic drugs.
    Cancer letters 03/2009; 279(1):13-21. DOI:10.1016/j.canlet.2009.01.016 · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gambogic acid (GA) is the major active ingredient of gamboge, a brownish to orange resin exuded from Garcinia hanburryi tree in Southeast Asia. The present study aims to demonstrate that gambogic acid (GA) has potent anticancer activity for glioblastoma by in vitro and in vivo study. Rat brain microvascular endothelial cells (rBMEC) were used as an in vitro model of the blood-brain barrier (BBB). To reveal an involvement of the intrinsic mitochondrial pathway of apoptosis, the mitochondrial membrane potential and the western blot evaluation of Bax, Bcl-2, Caspase-3, caspase-9 and cytochrome c released from mitochondria were performed. Angiogenesis was detected by CD31 immunochemical study. The results showed that the uptake of GA by rBMEC was time-dependent, which indicated that it could pass BBB and represent a possible new target in glioma therapy. GA could cause apoptosis of rat C6 glioma cells in vitro in a concentration-dependent manner by triggering the intrinsic mitochondrial pathway of apoptosis. In vivo study also revealed that i.v. injection of GA once a day for two weeks could significantly reduce tumor volumes by antiangiogenesis and apoptotic induction of glioma cells. Collectively, the current data indicated that GA may be of potential use in treatment of glioblastoma by apoptotic induction and antiangiogenic effects.
    Biochemical pharmacology 04/2008; 75(5):1083-92. DOI:10.1016/j.bcp.2007.10.033 · 4.65 Impact Factor