Xinfu Shi

Academy of Military Medical Sciences, T’ien-ching-shih, Tianjin Shi, China

Are you Xinfu Shi?

Claim your profile

Publications (6)15.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oil-in-water emulsions are potent human adjuvants commonly used in effective pandemic influenza vaccines; however, such emulsions that can induce both Th1-biased systemic immune responses and strong mucosal immune responses via an easy method of administration are lacking. To address this need for new adjuvants, we developed a novel oil/water emulsion, SPO1, which allows convenient mucosal immunization via an intranasal spray as well as by parenteral routes. Our report shows that SPO1 was able to boost up immunological resistance by inducing effective mucosal and serum antibodies, and the immune response was polarized to a Th1 pattern, as demonstrated by high IgG2α antibody levels and interferon-gamma production by splenocytes from intranasally (i.n.) immunized mice. Up-regulation of co-stimulatory and antigen-presenting molecules on dendritic cells was also observed in vivo after i.n. immunization, suggesting a possible mechanism for the adjuvant effects of SPO1. Another explanation may simply be a depot of antigen at the immunization site, as evidenced by in vivo imaging of i.n. immunized mice. In conclusion, our results demonstrate that a novel oil/water emulsion, SPO1, is a potent Th1 adjuvant for use in influenza and other vaccines, as it induces strong mucosal and systemic immune responses.
    Vaccine 06/2012; 30(36):5425-36. · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To warrant potential clinical testing, the equine anti-severe acute respiratory syndrome coronavirus (SARS-CoV) F(ab')(2) requires evaluation in as many animal models as possible. In this study, we established a new animal model, the Chinese hamster, susceptible to SARS-CoV infection. SARS-CoV could propagate effectively and sustain high levels for 1 wk in animal lungs. All animals were protected from SARS-CoV infection in preventive settings. Further, when used therapeutically this antibody led to an approximately 4-log(10) decrease in viral burden in infected animal lungs. The pathological changes in lungs correlated closely with the dose of antibody administered. The excellent preventive and therapeutic roles of equine anti-SARS-CoV F(ab')(2) in several animal models, including the novel Chinese hamster model described in this study, have provided exciting data concerning its potential clinical study.
    Viral Immunology 10/2007; 20(3):495-502. · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high susceptibility of elderly to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) indicates how crucial it is to protect the elderly by various strategies. Aged BALB/c mice displayed a high susceptibility to SARS-CoV and have been a valuable platform for evaluation of strategies against SARS-CoV infection. In this study, we confirmed the validity of this model using various methods, and verified that equine anti-SARS-CoV F(ab')(2) can prevent aged animals from SARS-CoV infection. In a therapeutic setting, treatment with anti-SARS-CoV F(ab')(2) decreased viral load more than several thousand folds in the lungs. Thus, this antibody should be a potential candidate for treatment of elderly patients suffering from SARS.
    International Immunopharmacology 04/2007; 7(3):392-400. · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Equine anti-severe acute respiratory syndrome-associated coronavirus F(ab')(2) has been verified to protect mice from infection with severe acute respiratory syndrome-associated coronavirus (SARS-CoV). However, before potential clinical application, the antibody needs to be tested in as many animal models as possible to ensure its safety and efficiency. In this study, after verification by various methods that the golden Syrian hamster constitutes a model susceptible to SARS-CoV infection, we confirmed that the antibody could protect animals completely from SARS-CoV infection in the preventive setting. More importantly, the antibody could reduce viral titers or copies by approximately 10(3)- to 10(4)-fold in animal lung after virus exposure, compared with negative control. These data provide further evidence to warrant clinical studies of this antibody in the treatment and prevention of SARS.
    Viral Immunology 01/2007; 20(1):197-205. · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe acute respiratory syndrome (SARS) is a newly emerged infectious disease caused by a novel coronavirus (SARS-CoV), which spread to over 30 countries in early 2003. Until recently, no specific vaccines and effective drugs have been available to protect patients from infection by this virus. To exploit a new strategy to fight this disease, we investigated the effect of interference RNA (RNAi) on the virus infection and replication with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT), plaque-forming, Western-blot and real-time PCR assays. Results showed that the plasmid-derived siRNAs targeting the non-structural protein 1 (NSP1) sequence of the SARS-CoV genome could specifically inhibit the expression of the NSP1 sequence and effectively suppress the replication and propagation of SARS-CoV in cultured Vero E6 cell lines. The expression of the Spike and Nucleoprotein genes of SARS-CoV at mRNA and protein levels in small interfering (si)RNA-expressing cells was significantly less than that in controls when analysed with PCR and Western-blot assays, 3 days post SARS-CoV infection. Our study provides strong evidence that the NSP1 sequence in the SARS-CoV genome is a valid target for RNAi and the effect of the siRNAs probably mainly resulted from effects on global reduction of subgenome synthesis and subsequent protein expression of SARS-CoV.
    Antiviral therapy 02/2005; 10(4):527-33. · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aetiological agent for severe acute respiratory syndrome (SARS) has been determined to be a new type of coronavirus (SARS-CoV) that infects a wide range of mammalian hosts. Up to now, there have been no specific drugs to protect against SARS-CoV infection, thus developing effective strategies against this newly emerged viral infection warrants urgent efforts. Adoptive immune therapy with pathogen-specific heterologous immunoglobulin has been successfully used to control the dissemination of many viral infections. To investigate whether a neutralizing antibody against SARS-CoV raised in an artiodactylous host can have a protective role on primate cells, we prepared serum IgGs and their pepsin-digested F(ab')2 fragments from horses inoculated with purified SARS-CoV (BJ-01 strain). The protective effect of the F(ab')2 fragments against SARS-CoV infection was determined in cultured Vero E6 cells by cytopathic effect (CPE), MTT and plaque-forming assays and in a Balb/c mouse model by CPE and quantitative RT-PCR. The results showed the neutralization titres of F(ab')2 from three horses all reached at least 1:1600, and 50 microg of the F(ab')2 fragments could completely neutralize 1x10(4) TCID50- SARS-CoV in vivo. Additionally, we observed that F(ab')2, against BJ-01 strain could also protect cells from infection by the variant GZ-01 strain in vitro and in vivo. Our work has provided experimental support for testing the protective equine immunoglobulin in future large primate or human trials.
    Antiviral therapy 02/2005; 10(5):681-90. · 3.07 Impact Factor