Are you W D'Hooge?

Claim your profile

Publications (2)3.96 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The importance of combustion processes as a source of substances with estrogenic activity in the environment was investigated. Wood (nontreated and treated with wood preservatives), barbecue charcoal, meat, and kitchen waste were combusted in a laboratory-scale incinerator. Flue gas emissions (particulates and gaseous pollutants) were trapped in polyurethane foam cartridges. The cartridges were subjected to Soxhlet extraction and part of the extracts redissolved in dimethylsulfoxide (DMSO) for analyses of estrogenic activity by means of the yeast-based human estrogen receptor (hER) bioassay. A synthetic estrogen, 17-alpha-ethinylestradiol (EE2), was used as the reference estrogenic compound. Part of the extracts was analyzed for the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). Estrogenic compounds in the flue gas (wood) were as high as 234 +/- 25 ng m(-3) EE2 equivalent compared with 27 to 81 ng m(-3) EE2 equivalent in flue gas from combustion of barbecue charcoal. Concentrations of polycyclic aromatic hydrocarbons in both flue gas streams were in the range of 21,000 +/- 2000 and 240 +/- 110 ng m(-3), respectively. In general, the concentrations of EE2 equivalent in the flue gas samples were at least a factor of 1000 lower than total PAH concentration. The EE2 levels were not related to the concentration of PAHs in any flue gas sample.
    Journal of Environmental Quality 01/2003; 32(2):417-22. · 2.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Combustion processes are known to produce organic micro-pollutants in the flue gas at concentrations ranging over several orders of magnitude. Some organic micro-pollutants are suspected of being pseudo-estrogens and as such they can affect the public health. In this study, the possible application of the yeast based human estrogen receptor (hER) bioassay to screen flue gas streams for the presence of estrogenic active micro-pollutants was explored. Specifically, the protocol was modified to allow the detection and quantification of the potential estrogenic active non-polar organic micro-pollutants contained in the flue gas matrix. The modified assay was calibrated using a model estrogenic compound (17-alpha-ethinylestradiol (EE2)) dissolved in methylene chloride at concentrations ranging from 3 ng l(-1) to 3000 ng l(-1). The effective concentration to elucidate a 50% response (EC50) was 87 ng l(-1) of equivalent dissolved in methylene chloride. Samples of methylene chloride used to trap non-polar micro-pollutants in flue gas from combustion of pine wood were found to clearly register estrogenic activity by the bioassay under certain conditions. The combustion tests were performed with pinewood alone and with pine wood in the presence of both Copper-naphthenate and copper(II)chloride at 600 degrees C and 1000 degrees C. These conditions must be considered as experimental rather than practical. Overall, the results suggest that, by means of this modified assay, it is possible and warranted to screen systematically for estrogens in flue gas combustion processes.
    Environmental Technology 04/2002; 23(3):287-91. · 1.61 Impact Factor