V I Duda

Institute of Biochemistry and Physiology of Microorganisms, Pushchino-na-Oke, Moskovskaya, Russia

Are you V I Duda?

Claim your profile

Publications (67)31.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ultramicrobacteria (UMB) are species of the domain Bacteria characterized by very small sizes of proliferating cells (less than 0.1 μm3 in volume) and small genomes (3.2 to 0.58 Mb). Some authors use the term nanobacteria as a synonym of UMB. Several tens of UMB species have been isolated from various nat� ural habitats: sea water, soil, silt, Greenland ice sheet, permafrost soils, and intestines of humans and insects. Under laboratory conditions, they are cultivated on different nutrient media. In the second prokaryotic domain, the Archaea, ultrasmall forms (ultramicroarchaea) have also been described, including nanoarchaea (members of the genus Nanoarchaeum) with a cell volume of less than 0.1 μm3. The term nanobacteria is used in the literature also to denote ultrasmall bacterium�like particles occurring in rocks, sands, soils, deep sub� surface layers, meteorites, and clinical samples. The systematic position and the capacity for self�reproduc� tion of these particles are still unclear. The cultured UMB forms are characterized by highly diverse morphol� ogy, ultrastructural organization, physiology, biochemistry, and ecology. UMB form three groups according to the type of cell wall structure and the reaction to Gram staining: (1) gram�negative, (2) gram�positive, and (3) cell wall�lacking. Their cells divide by constriction, septation, or budding. The unique processes per� formed by UMB are dehalorespiration and obligate or facultative epibiotic parasitism. The UMB that syn� thesize organic compounds in ocean waters with the involvement of proteorhodopsin play a great role in the biosphere. UMB have been found in seven large phylogenetic groups of prokaryotes, where their closest rel� atives are organisms with larger cells typical of bacteria, which is evidence of the polyphyletic origin of the currently known UMB species and the reductive mode of their evolution.
    Microbiology 02/2012; 81(4):379-390. · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two strains, NF4 and NF5, of a yellow-colored gram-negative bacterium were isolated from sediments of Lake Baikal and from old oil sludge of the Nizhnekamsk oil-processing plant. The cells of the strains are ultrasmall coccoids or short rods, measuring 0.2–0.4 × 0.2–0.5 μm; the average cell volume ranges from 0.004 to 0.04 μm3. A considerable proportion (30–60%) of cells have nanometer dimensions (180–300 nm in diameter and 0.004–0.02 μm3 in volume). The new isolates are thus among the smallest representatives of presently known free-living ultramicrobacteria. The two studied isolates are gram-negative nonmotile cells possessing a pronounced outer membrane. The cells do not have flagella and are not capable of gliding motility. They divide by constriction, budding, and multiple septation. The multiplicity of reproduction mechanisms results in a high degree of cell polymorphism. The isolates are chemoorganotrophic, aerobic, psychrotolerant, oxidase- and catalase-positive. Their characteristic trait is the absence of extracellular hydrolytic enzymes, such as proteases, lipases, pectinases, and cellulases. Menaquinone MK-6 is the main respiratory quinone; the flexirubin pigment was not detected. The G + C contents of the DNA of strains NF4 and NF5 are 40.8 and 40.5 mol %, respectively. The DNA-DNA hybridization level of strains NF4 and NF5 was close to 100%. Analysis of the 16S rRNA gene sequences and the fatty acid compositions showed that the isolates are most closely related to certain representatives of the genus Chryseobacterium (C. solincola, C. antarcticum, and C. jeonii). However, the differences in the 16S rRNA gene sequences, as well as in the phenotypic properties, such as formation of ultrasmall cells, the absence of extracellular hydrolases, oligotrophy, and the capacity for epibiosis on bacterial cells, suggest that the studied strains belong to a new species of the genus Chryseobacterium. The capacity for epibiosis, i.e., the ability to exist in a tightly adhered state on the surfaces of host Bacillus subtilis cells, is a peculiar trait of the studied isolates. It is assumed that adhesion of the cells of strains NF4 and NF5 (members of the phylum Bacteroidetes) occurs via by the same unique mechanism as the mechanism that we previously described for representatives of Alphaproteobacteria (Kaistia sp., NF1, and NF3), which use polysaccharide chains equipped with sticky granules as trapping and constricting cords.
    Mikrobiologiia 01/2011; 80(4):529-42.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The morphology of microbial cells was studied, and the biomass of microorganisms was estimated in the modern steppe soils and paleosols buried under kurgans in the Lower Volga region with the methods of electron microscopy. The shape and ultrastructure of the cells in the modern soils and paleosols were similar, though their average volumes differed (0.37 and 0.28 μm3, respectively). The portion of cells with a volume above 1 μm3 in the surface soils and paleosols reached 10.9 and 9.2%, respectively, and the portion of cells with a volume less than 0.01 μm3 in the surface soils was 10% lower than that in the buried paleosols. It was found that the cells of the microorganisms have an external organomineral layer, which increases the cell volume by 4.9 times, and this fact was taken into account in the calculation of the microbial biomass. In the chestnut and light chestnut paleosols, the latter comprised 1500 and 230 μg of C/g soil, respectively.
    Eurasian Soil Science 01/2010; 43(10):1140-1149. · 0.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The non-spore-forming gram-positive bacterium Mycobacterium smegmatis mc2 155, related to M. tuberculosis, was revealed to be capable of forming different types of dormant forms (DFs) during the life cycle of its cultures. The relationship between the intraspecies diversity of DFs and the cultivation conditions of the mycobacterium was established. The DFs possessed the following common properties: (i) maintenance of viability for a long period of time (5 months), (ii) resistance to deleterious factors such as heat treatment, and (iii) morphological and ultrastructural peculiarities that distinguish DFs from vegetative cells. The diversity of M. smegmatis DFs manifested itself in differences in terms of structural organization, conditions required for growth renewal, and capacity to produce antibiotic-resistant variants upon germination on selective media. Well-differentiated cystlike dormant cells (CDCs) were formed in the cultures grown in synthetic SR1 medium with fivefold-decreased nitrogen content. The structural organization of CDCs differed from that of other DF types mainly in the presence of club-shaped cells, thickened lamellar cell walls, coarse cytoplasm texture, and large electron-transparent triacylglyceride inclusion bodies. It was possible to use mycobacterial CDCs as a source of PCR-competent DNA. CDC populations were heterogeneous in cell buoyant density, and the individual fractions, which we isolated, were found to differ in thermal stability and the ability to revert to growth under standard conditions. Coccoid DFs, which retained their colony-forming capacity for a long time but were less heat-resistant than the CDCs, were formed by mycobacteria grown in standard Sauton’s medium with initial pH value decreased to 6.2. Poorly differentiated DFs resulted from growing mycobacterial cultures in Sauton’s medium with a fivefold-decreased phosphorus content. Upon germination of various DF types, the variants resistant to kanamycin (200 μg/ml) and tetracycline (20 μg/ml) were obtained. CDC suspensions incubated for 5 months demonstrated the highest percentage (1.5%) of antibiotic-resistant clones. The data obtained on the DF diversity of M. smegmatis, a fast-growing relative of M. tuberculosis, contribute to our understanding of the flexibility of the survival strategy of this bacterium in nature and in the host organism. Key wordsmycobacteria-dormancy-diverse morphological types of dormant forms-cystlike dormant cells-persistence-stress resistance
    Microbiology 01/2010; 79(4):461-471. · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differences in generation of dormant forms (DF) were revealed between two strains of non-sporeforming gram-negative bacteria Azospirillum brasilense, Sp7 (non-endophytic) and Sp245 (endophytic strain). In post-stationary ageing bacterial cultures grown in a synthetic medium with a fivefold decreased initial nitrogen content, strain Sp7 formed two types of cyst-like resting cells (CRC). Strain Sp245 did not form such types of DF under the same conditions. CRC of the first type were formed in strain Sp245 only under phosphorus deficiency (C > P). The endophytic strain was also shown to form structurally differentiated cells under complete starvation, i.e. at a transfer of early stationary cultures, grown in the media with C > N unbalance, to saline solution (pH 7.2). These DF had a complex structure similar to that of azotobacter cysts. The CRC, which are generated by both azospirilla strains and belong to distinct morphological types, possessed the following major features: absence of division; specific ultrastructural organization; long-term maintenance of viability (for 4 months and more); higher heat resistance (50–60°C, 10 min) as compared with vegetative cells, i.e. the important criteria for dormant prokaryotic forms. However, CRC of non-endophytic strain Sp7 had higher heat resistance (50, 55, 60°C). The viability maintenance and the portion of heat-resistant cells depended on the conditions of maturation and storage of CRC populations. Long-term storage (for 4 months and more) of azospirilla DF populations at −20°C was optimal for maintenance of their colony-forming ability (57% of the CFU number in stationary cultures), whereas the largest percentage of heat-resistant cells was in CRC suspensions incubated in a spent culture medium (but not in saline solution) at room temperature. The data on the intraspecies diversity of azospirilla DF demonstrate the relation between certain type DF formation to the type of interaction (non-endophytic or endophytic) with the plant partner and provide more insight into the adaptation mechanisms that ensure the survival of gram-negative non-spore-forming bacteria in nature.
    Microbiology 01/2009; 78(1):33-41. · 0.65 Impact Factor
  • Doklady Biological Sciences 10/2008; 422:369-72.
  • Source
    Microbiology 04/2008; 77(1):115-117. · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The morphology, ultrastructure, and quantity of bacterial nanoforms were studied in extreme biotopes: East Siberia permafrost soil (1-3 Ma old), petroleum-containing slimes (35 years old), and biofilms from subsurface oil pipelines. The morphology and ultrastructure of microbial cells in natural biotopes in situ were investigated by high-resolution transmission electron microscopy and various methods of sample preparation: ultrathin sectioning, cell replicas, and cryofractography. It was shown that the biotopes under study contained high numbers of bacterial nanoforms (29-43% of the total number of microorganisms) that could be assigned to ultramicrobacteria due to their size (diameter of < or =0.3 microm and volume of < or =0.014 microm3) and structural characteristics (the presence of the outer and cytoplasmic membranes, nucleoid, and cell wall, as well as their division patterns). Seven different morphostructural types of nanoforms of vegetative cells, as well as nanospores and cyst-like cells were described, potentially representing new species of ultramicrobacteria. In petroleum-containing slimes, a peculiar type of nanocells was discovered, gram-negative cells mostly 0.18-0.20 x 0.20-0.30 microm in size, forming spherical aggregates (microcolonies) of dividing cells in situ. The data obtained promoted the isolation of pure cultures of ultramicrobacteria from petroleum-containing slimes; they resembled the ultramicrobacterium observed in situ in their morphology and ultrastructure.
    Mikrobiologiia 01/2008; 77(1):46-54.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transmission electron and fluorescence microscopy was used to study the character of the interaction of free-living ultramicrobacterial (UMB) strains NF1 and NF3, affiliated with the genus Kaistia, and seven species of gram-positive and gram-negative heterotrophic bacteria. Strains NF1 and NF3 were found to exhibit parasitic activity against gram-positive Bacillus subtilis and gram-negative Acidovorax delafildii. UMB cells are tightly attached to the envelopes of the victim cells and induce their lysis, thus demonstrating the features of typical ectoparasitism. The selectivity of parasitism of the studied UMB to the victim bacteria has been shown: only two soil microorganisms of the seven test objects, B. subtilis ATCC 6633 and an aerobic gram-negative bacterium A. delafildii 39, were found to be sensitive to UMB attack. Other bacteria (Micrococcus luteus VKM Ac-2230, Staphylococcus aureus 209-P, Pseudomonas putida BS394, Escherichia coli C 600, and Pantoea agglomerans ATCC 27155) were not attacked by UMB. It was established for the first time that free-living UMB may be facultative parasites not only of phototrophic bacteria, as we have previously demonstrated, but of heterotrophic bacteria as well. The UMB under study seem to play an important role in the regulation of the quantity of microorganisms and in the functioning of microbial communities in some natural ecotopes.
    Mikrobiologiia 01/2008; 77(1):55-62.
  • Mikrobiologiia 01/2008; 77(1):129-31.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gram-negative chemoorganotrophic soil ultramicrobacteria (UMB), strains NF1 and NF3, have been isolated. In their development cycle, the strains formed small coccoid cells of 400–800 nm and ultrasmall cells of 200–300 nm. Phylogenetically, the strains NF1 and NF3 belong to Alphaproteobacteria and are close to the type strain of the recently described species Kaistia adipata. The ultrastructure of UMB cells has been studied using ultrathin sections and freeze-fracturing. It has been shown that the structure of UMB cell walls is of the gram-negative type; the outer membrane and peptidoglycan layer are well differentiated. The cell surface has numerous protrusions (prosthecae) of conical or spherical shape filled with the contents of the periplasm. The formation of unusual cellular structures (not occurring in known free-living bacteria) is a feature of UMB; these include the following: (a) piles of rod-like subunits, ca. 30 Å in diameter and 150–250 Å in length; (b) long bunches (up to 300–400 Å) comprised of filamentous subunits; and (c) large electron-dense spherical bodies (up to 200–300 Å in diameter) localized in the periplasm. A distinctive feature of UMB is their ability to grow as facultative parasites on living cyanobacterial (CB) cells. In this case, three types of interaction between UMB and CB have been revealed: (1) adsorption of UMB cells on the surface of CB cells; (2) penetration of UMB into polysaccharide sheathes; and (3) penetration of UMB into CB cytoplasm. UMB cells have been shown to reproduce by budding, with buds (up to 2–3) located directly on the mother cell, without formation of intermediate hyphae.
    Microbiology 04/2007; 76(5):575-584. · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The changes in the state of Bacillus subtilis spores that occur during germination were analyzed using dynamic phase microscopy (DPM). DPM is based on monitoring and analyzing the interference image of a specimen in a coherent laser beam. The optical path difference (the phase thickness of the specimen, PT) depends on the geometrical height of the specimen and its refractive index. We demonstrated that the maximum PT value is a convenient criterion of the physiological state of the organism involved: PT is > or = 80 nm, 40-50 nm, and < or = 0 in dormant, developing (initiated), and heat-killed spores, respectively. We established that (i) heating a spore suspension to 40 degrees C results in a reversible twofold decrease (from 80 to 40 nm) in their PT under conditions that do not promote the development of the bacteria; this decrease is irreversible under growth-promoting conditions; (ii) the PT values of germinating spores oscillate with a considerable fluctuation amplitude (up to 7 nm), in contrast to the limited fluctuation amplitude (within 1 nm) in dormant spores; (iii) activated spores were heterogenous with respect to the PT pattern: a majority of the spores exhibited a usual spatial profile (with a maximum thickness in the center), whereas a minor fraction of them were characterized by an erythrocyte-like profile with a concave center; this implies that the central zone of the spore was more rapidly hydrated (with a decrease in refractive index) than the peripheral zone.
    Mikrobiologiia 01/2007; 76(2):191-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The procedure of obtaining DNA-containing cell envelopes ("micromummies") of bacteria, yeasts, and fungi using chaotropic salts has been developed previously and the possibility of their direct application in PCR has been demonstrated. The fine structure of micromummies has been studied by electron microscopic methods. This work has demonstrated that additional treatment of micromummies of yeasts and gram-positive bacteria with proteinase K results in hydrolytic degradation of cell proteins and drastic enhancement of cell wall permeability for macromolecules (DNA). Thus, the efficiency of PCR ex situ using resultant micromummies after washing off the products of protein hydrolysis and proteinase K can be increased. The results of electron microscopic study of ultrathin sections of yeasts (Pichia pastoris, Saccharomyces cerevisiae) and gram-positive bacteria (Micrococcus luteus, Arthrobacter globiformis, Bacillus subtilis) support the biochemical data that treatment with chaotropic salts and proteinase K results in the loosening of microbial cell walls and in a decrease in the intracellular protein content. At the same time, cell walls generally maintain their integrity (continuity) and initial spherical or rodlike shape. The optimal modes of treatment of the cells of different microbial species with chaotropic salts and proteinase K have been selected to obtain permeabilized cell envelopes containing denatured or native DNA.
    Mikrobiologiia 01/2007; 76(1):72-82.
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells, especially with regard of their ability to withstand various environmental assaults. Previously, we described some approaches based on electron microscopy methods to discriminate vegetative, dormant, and dead cells in both aged microbial cultures and environmental samples, including permafrost. We propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method – dynamic phase microscopy (DPM). The substantial advantage of DPM is that it gives quantitative (digitized) data of undestroyed (living) microscopic objects, exemplified in our work by Bacillus licheniformis spores. Using DPM made it possible to record interference images of objects (spores) and to produce picture of their “phase thickness” (PT) that is the optical path difference in nm. Thus, it was demonstrated the remarkable difference in the PT of spores at different physiological states: dormant, germinating, and heat-killed spores had PT values of 80, 40–50, and 20 nm, respectively. The other found criterion to distinguish between spores was the PT fluctuations. In contrast to dormant and killed spores, the PT of germinating spores oscillated with amplitude of up to 7 nm, with typical frequencies of 1.3 and 3.4 Hz. A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells. Under the conditions that did not support germination (the lack of nutrients), we were able to follow the response of a single dormant spore and a spore population to heating from 25 °C to 70 °C. Thus, a very small temperature change (from 40 °C to 42 °C) under conditions non-favorable for germination, caused a drastic decrease in the spores’ PT; the second drop in the PT values was observed during heating from 60 °C to 70 °C. These changes were reversible: after cessation of heating, PT values became similar to dormant spores. So, DPM allowed us to track the first, reversible stage of activation, when a spore maintains the attributes of the dormant state. Under the conditions that favor germination (in the presence of nutrients), irreversible changes in the PT and spore diameter, d, were detectable in a single germinating spore and spore population. In addition, DPM allowed an easy estimation of the heterogeneity of spore populations. It is a great advantage of DPM that it makes possible to reveal the ability of spores to respond to various stimuli with or without further germination and outgrowth – the salient feature of a living cell. DPM may have a high potential in general microbiology and astrobiology, enabling to: (1) estimate the heterogeneity of spore populations either under standard conditions and subjected to solar radiation and simulated extraterrestrial factors; (2) to track a response of spores to changing conditions at the early germination stage, even if they do not enter further outgrowth; (3) to develop some approaches for monitoring studies and appraisal of the physiological state of dormant cells in situ, in samples of dry soils, permafrost, etc. regarded as models for searching life beyond the Earth.
    Advances in Space Research 01/2007; · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The changes in the state of Bacillus subtilis spores that occur during germination were analyzed using dynamic phase microscopy (DPM). DPM is based on monitoring and analyzing the interference image of a specimen in a coherent laser beam. The optical path difference (the phase thickness of the specimen, PT) depends on the geometrical height of the specimen and its refractive index. We demonstrated that the maximum PT value is a convenient criterion of the physiological state of the organism involved: PT is ≥ 80 nm, ∼40–50 nm, and ≤ 20 in dormant, developing (initiated), and heat-killed spores, respectively. We established that (i) heating a spore suspension to 40°C results in a reversible twofold decrease (from 80 to 40 nm) in their PT under conditions that do not promote the development of the bacteria; this decrease is irreversible under growth-promoting conditions; (ii) the PT values of germinating spores oscillate with a considerable fluctuation amplitude (up to 7 nm), in contrast to the limited fluctuation amplitude (within 1 nm) in dormant spores; (iii) activated spores were heterogenous with respect to the PT pattern: a majority of the spores exhibited a usual spatial profile (with a maximum thickness in the center), whereas a minor fraction of them were characterized by an erythrocyte-like profile with a concave center; this implies that the central zone of the spore was more rapidly hydrated (with a decrease in refractive index) than the peripheral zone.
    Microbiology 01/2007; 76(2):164-171. · 0.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Information about the functions of extracellular autoregulators, which adapt microorganisms to the stresses “scheduled” in the development cycle of microbial cultures (stresses of new medium, starvation, or space exhaustion (high cell density)) is summarized in the review. In a number of bacteria and yeasts, derivatives of alkylhydroxybenzenes (AHB), particularly of the class of alkyl resorcinols, act as autoregulators with adaptogenic functions. The chemical structure of AHB determines their amphiphility; capacity for physical and chemical interaction with membrane lipids, proteins, and DNA; properties as natural modifiers of biological membranes and enzymes; and the expression of antioxidant activity. Increase of AHB concentration up to the critical level (10−5-10−4 M) results in cessation of cell division and in transition of the microbial culture to the stationary phase; further increase to 10−4-10−3 M induces a transition of some of the cells of a post-stationary culture to the anabiotic state with the formation of cystlike resting cells (CRC), even in non-spore-forming bacteria. AHB participate in the regulation of the phenotypic variability of bacteria. The dynamics of extra-and intracellular concentrations of AHB in growing microbial cultures and the polymodality of their effect determine the adaptogenic functions of AHB as autoinhibitors of culture growth, autoinducers of anabiosis, and autoinhibitors of germination of resting forms. Manifestation of any given function depends on the concentration of AHB, the physiological state of the recipient cells, and on environmental factors. The species nonspecificity of AHB effects points to their significant role in the regulation of the development and functioning of microbial communities.
    Microbiology 06/2006; 75(4):380-389. · 0.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A thermotolerant, Gram-positive, aerobic, endospore-forming, acidophilic bacterium (strain Kr1T) was isolated from the pulp of a gold-containing sulfide concentrate processed at 40 degrees C in a gold-recovery plant (Siberia). Cells of strain Kr1(T) were straight to slightly curved rods, 0.8-1.2 microm in diameter and 1.5-4.5 microm in length. Strain Kr1T formed spherical and oval, refractile, subterminally located endospores. The temperature range for growth was 20-60 degrees C, with an optimum at 40 degrees C. The pH range for growth on medium containing ferrous iron was 1.2-2.4, with an optimum at pH 2.0; the pH range for growth on medium containing S0 was 2.0-5.0, with an optimum at pH 2.5. Strain Kr1T was mixotrophic, oxidizing ferrous iron, S0, tetrathionate or sulfide minerals as energy sources in the presence of 0.02 % yeast extract or other organic substrates. The G+C content of the DNA of strain Kr1T was 48.2+/-0.5 mol%. Strain Kr1T showed a low level of DNA-DNA reassociation with the known Sulfobacillus species (11-44 %). 16S rRNA gene sequence analysis revealed that Kr1T formed a separate phylogenetic group with a high degree of similarity between the nucleotide sequences (98.3-99.6 %) and 100 % bootstrap support within the phylogenetic Sulfobacillus cluster. On the basis of its physiological properties and the results of phylogenetic analyses, strain Kr1T can be affiliated to a novel species of the genus Sulfobacillus, for which the name Sulfobacillus thermotolerans sp. nov. is proposed. The type strain is Kr1T (=VKM B-2339T=DSM 17362T).
    International journal of systematic and evolutionary microbiology 06/2006; 56(Pt 5):1039-42. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electron microscopy examinations of thin sections and freeze-fracture replicas revealed the specific ultrastructural features of Alicyclobacillus tolerans strain K1(T). In particular, the cell wall displayed an ultrastructure typical of gram-positive bacteria and consisted of a thin murein layer (50-60 A in thickness); cells exhibited a surface S-layer constituted by large hexagonally packed (p6-symmetry) rod-shaped subunits of 150-160 A in diameter and 200 A in height. In the cytoplasmic membrane, there were intramembrane vesicular structures that sometimes appeared as large leaflets in the central part. The cytoplasm contained numerous vesicular inclusions covered with a monolayered wall, dissimilar to bilamellar lipid membranes. Endospore coats displayed an intricate structure and consisted of three thick layers; the outer layer had an unusual fine structure; the exosporium was also found.
    Archives of Microbiology 04/2006; 185(1):63-8. · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Information about the functions of extracellular autoregulators, which adapt microorganisms to the stresses "scheduled" in the development cycle of microbial cultures (stresses of new medium, starvation, or space exhaustion (high cell density)) is summarized in the review. In a number of bacteria and yeasts, derivatives of alkylhydroxybenzenes (AHB), particularly of the class of alkyl resorcinols, act as autoregulators with adaptogenic functions. The chemical structure of AHB determines their amphiphility; capacity for physical and chemical interaction with membrane lipids, proteins, and DNA; properties as natural modifiers of biological membranes and enzymes; and the expression of antioxidant activity. Increase of AHB concentration up to the critical level (10(-5)-10(-4) M) results in cessation of cell division and in transition of the microbial culture to the stationary phase; further increase to 10(-4)-10(-3) M induces a transition of some of the cells of a post-stationary culture to the anabiotic state with the formation of cystlike resting cells (CRC), even in non-spore-forming bacteria. AHB participate in the regulation of the phenotypic variability of bacteria. The dynamics of extra- and intracellular concentrations of AHB in growing microbial cultures and the polymodality of their effect determine the adaptogenic functions of AHB as autoinhibitors of culture growth, autoinducers of anabiosis, and autoinhibitors of germination of resting forms. Manifestation of any given function depends on the concentration of AHB, the physiological state of the recipient cells, and on environmental factors. The species nonspecificity of AHB effects points to their significant role in the regulation of the development and functioning of microbial communities.
    Mikrobiologiia 01/2006; 75(4):446-56.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1–3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2–9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.
    Advances in Space Research 01/2006; · 1.18 Impact Factor

Publication Stats

283 Citations
31.18 Total Impact Points

Institutions

  • 1995–2012
    • Institute of Biochemistry and Physiology of Microorganisms
      Pushchino-na-Oke, Moskovskaya, Russia
  • 1987–2010
    • Russian Academy of Sciences
      • • Skryabin Institute of Biochemistry and Physiology of Microorganisms
      • • Institute of Microbiology
      Moscow, Moscow, Russia
  • 2007
    • Winogradsky Institute Of Microbiology
      Moskva, Moscow, Russia