V Gersl

Charles University in Prague, Praha, Hlavni mesto Praha, Czech Republic

Are you V Gersl?

Claim your profile

Publications (51)92.17 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthracycline anticancer drugs (e.g., doxorubicin or daunorubicin) can induce chronic cardiotoxicity and heart failure (HF), both of which are believed to be based on oxidative injury and mitochondrial damage. In this study, molecular and functional changes induced by chronic anthracycline treatment with progression into HF in post-treatment follow-up were analyzed with special emphasis on nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) pathways. Chronic cardiotoxicity was induced in rabbits with daunorubicin (3 mg/kg, weekly for 10 weeks), and the animals were followed for another 10 weeks. Echocardiography revealed a significant drop in left ventricular (LV) systolic function during the treatment with marked progression to LV dilation and congestive HF in the follow-up. Although daunorubicin-induced LV lipoperoxidation was found, it was only loosely associated with cardiac performance. Furthermore, although LV oxidized glutathione content was increased, the oxidized-to-reduced glutathione ratio itself remained unchanged. Neither Nrf2, the master regulator of antioxidant response, nor the majority of its target genes showed up-regulation in the study. However, down-regulation of manganese superoxide dismutase and NAD(P)H dehydrogenase [quinone] 1 were observed together with heme oxygenase 1 up-regulation. Although marked perturbations in mitochondrial functions were found, no induction of PGC1α-controlled mitochondrial biogenesis pathway was revealed. Instead, especially in the post-treatment period, an impaired regulation of this pathway was observed along with down-regulation of the expression of mitochondrial genes. These results imply that global oxidative stress need not be a factor responsible for the development of anthracycline-induced HF, whereas suppression of mitochondrial biogenesis might be involved.
    Journal of Pharmacology and Experimental Therapeutics 08/2012; 343(2):468-78. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dexrazoxane (DEX, ICRF-187) is the only clinically approved cardioprotectant against anthracycline cardiotoxicity. It has been traditionally postulated to undergo hydrolysis to iron-chelating agent ADR-925 and to prevent anthracycline-induced oxidative stress, progressive cardiomyocyte degeneration and subsequent non-programmed cell death. However, the additional capability of DEX to protect cardiomyocytes from apoptosis has remained unsubstantiated under clinically relevant in vivo conditions. Chronic anthracycline cardiotoxicity was induced in rabbits by repeated daunorubicin (DAU) administrations (3 mg kg(-1) weekly for 10 weeks). Cardiomyocyte apoptosis was evaluated using TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling) assay and activities of caspases 3/7, 8, 9 and 12. Lipoperoxidation was assayed using HPLC determination of myocardial malondialdehyde and 4-hydroxynonenal immunodetection. Dexrazoxane (60 mg kg(-1)) co-treatment was capable of overcoming DAU-induced mortality, left ventricular dysfunction, profound structural damage of the myocardium and release of cardiac troponin T and I to circulation. Moreover, for the first time, it has been shown that DEX affords significant and nearly complete cardioprotection against anthracycline-induced apoptosis in vivo and effectively suppresses the complex apoptotic signalling triggered by DAU. In individual animals, the severity of apoptotic parameters significantly correlated with cardiac function. However, this effective cardioprotection occurred without a significant decrease in anthracycline-induced lipoperoxidation. This study identifies inhibition of apoptosis as an important target for effective cardioprotection against chronic anthracycline cardiotoxicity and suggests that lipoperoxidation-independent mechanisms are involved in the cardioprotective action of DEX.
    British Journal of Cancer 08/2009; 101(5):792-802. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The risk of cardiotoxicity is the most serious drawback to the clinical usefulness of anthracycline antineoplastic antibiotics, which include doxorubicin (adriamycin), daunorubicin or epirubicin. Nevertheless, these compounds remain among the most widely used anticancer drugs. The molecular pathogenesis of anthracycline cardiotoxicity remains highly controversial, although the oxidative stress-based hypothesis involving intramyocardial production of reactive oxygen species (ROS) has gained the widest acceptance. Anthracyclines may promote the formation of ROS through redox cycling of their aglycones as well as their anthracycline-iron complexes. This proposed mechanism has become particularly popular in light of the high cardioprotective efficacy of dexrazoxane (ICRF-187). The mechanism of action of this drug has been attributed to its hydrolytic transformation into the iron-chelating metabolite ADR-925, which may act by displacing iron from anthracycline-iron complexes or by chelating free or loosely bound cellular iron, thus preventing site-specific iron-catalyzed ROS damage. However, during the last decade, calls for the critical reassessment of this "ROS and iron" hypothesis have emerged. Numerous antioxidants, although efficient in cellular or acute animal experiments, have failed to alleviate anthracycline cardiotoxicity in clinically relevant chronic animal models or clinical trials. In addition, studies with chelators that are stronger and more selective for iron than ADR-925 have also yielded negative or, at best, mixed outcomes. Hence, several lines of evidence suggest that mechanisms other than the traditionally emphasized "ROS and iron" hypothesis are involved in anthracycline-induced cardiotoxicity and that these alternative mechanisms may be better bases for designing approaches to achieve efficient and safe cardioprotection.
    Pharmacological reports: PR 01/2009; 61(1):154-71. · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anthracycline cardiotoxicity ranks among the most severe complications of cancer chemotherapy. Although its pathogenesis is only incompletely understood, "reactive oxygen species (ROS) and iron" hypothesis has gained the widest acceptance. Besides dexrazoxane, novel oral iron chelator deferiprone has been recently reported to afford significant cardioprotection in both in vitro and ex vivo conditions. Therefore, the aim of this study was to assess whether deferiprone 1) has any effect on the anticancer action of daunorubicin and 2) whether it can overcome or significantly reduce the chronic anthracycline cardiotoxicity in the in vivo rabbit model (daunorubicin, 3 mg/kg i.v., weekly for 10 weeks). First, using the leukemic cell line, deferiprone (1-300 microM) was shown not to blunt the antiproliferative effect of daunorubicin. Instead, in clinically relevant concentrations (>10 microM), deferiprone augmented the antiproliferative action of daunorubicin. However, deferiprone (10 or 50 mg/kg administered p.o. before each daunorubicin dose) failed to afford significant protection against daunorubicin-induced mortality, left ventricular lipoperoxidation, cardiac dysfunction, and morphological cardiac deteriorations, as well as an increase in plasma cardiac troponin T. Hence, this first in vivo study changes the current view on deferiprone as a potential cardioprotectant against anthracycline cardiotoxicity. In addition, these results, together with our previous findings, further suggest that the role of iron and its chelation in anthracycline cardiotoxicity is not as trivial as originally believed and/or other mechanisms unrelated to iron-catalyzed ROS production are involved.
    Journal of Pharmacology and Experimental Therapeutics 08/2008; 326(1):259-69. · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clinical utility of anthracycline antineoplastic drugs is limited by the risk of cardiotoxicity, which has been traditionally attributed to iron-mediated production of reactive oxygen species (ROS). The aims of this study were to examine the strongly lipophilic iron chelator, salicylaldehyde isonicotinoyl hydrazone (SIH), for its ability to protect rat isolated cardiomyocytes against the toxicity of daunorubicin (DAU) and to investigate the effects of SIH on DAU-induced inhibition of proliferation in a leukaemic cell line. Cell toxicity was measured by release of lactate dehydrogenase and staining with Hoechst 33342 or propidium iodide and lipid peroxidation by malonaldehyde formation. SIH fully protected cardiomyocytes against model oxidative injury induced by hydrogen peroxide exposure. SIH also significantly but only partially and with no apparent dose-dependency, reduced DAU-induced cardiomyocyte death. However, the observed protection was not accompanied by decreased lipid peroxidation. In the HL-60 acute promyelocytic leukaemia cell line, SIH did not blunt the antiproliferative efficacy of DAU. Instead, at concentrations that reduced DAU toxicity to cardiomyocytes, SIH enhanced the tumoricidal action of DAU. This study demonstrates that iron is most likely involved in anthracycline cardiotoxicity and that iron chelation has protective potential, but apparently through mechanism(s) other than by inhibition of ROS-induced injury. In addition to cardioprotection, iron chelation may have considerable potential to improve the therapeutic action of anthracyclines by enhancing their anticancer efficiency and this potential warrants further investigation.
    British Journal of Pharmacology 07/2008; 155(1):138-48. · 5.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The risk of cardiotoxicity is the main drawback of anthracycline antibiotics. However, these drugs remain among the most effective and frequently used anti cancer drugs. In this study we aimed to assess the cardioprotective effects of aroylhydrazone iron (FE) chelators: pyridoxal isonicotinoyl hydrazone (PIH) and its two analogs: salicyladehyde isonicotinoyl hydrazone (SIH) and pyridoxal o-chlorbenzoyl hydrazone (o-108). In rabbits, chronic treatment with daunorubicin (DAU) (3 mg/kg weekly for 10 weeks) induced mortality (33%) as well as left ventricular (LV) dysfunction. Co-administrations of PIH (25 mg/kg, i.p.), SIH hydrochloride [1 mg/kg, iv] as well as o-108 (10 mg/kg, i.p.), fully prevented premature deaths and most of the DAU-induced functional impairments were significantly suppressed. However, when 2- to 2.5-fold higher doses of the chelators were used, they led to rather paradoxical and mostly negative results regarding both cardioprotection and overall mortality.
    Hemoglobin 02/2008; 32(1-2):207-15. · 0.89 Impact Factor
  • Toxicology Letters - TOXICOL LETT. 01/2008; 180.
  • Toxicology Letters - TOXICOL LETT. 01/2008; 180.
  • Toxicology Letters - TOXICOL LETT. 01/2008; 180.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac troponin T (cTnT) and troponin I (cTnI) are becoming acknowledged as useful biochemical markers of drug-induced cardiotoxicity. In this study we examined the release kinetics of cTnT and cTnI using an in vitro model of isolated rat neonatal ventricular cardiomyocytes (NVCM, 72h treatment with 0.1-3microM of daunorubicin) and compared it with data from a rabbit model of chronic anthracycline-induced cardiomyopathy in vivo (3mg/kg of daunorubicin weekly, 10 weeks). In cell-culture media, the cTnI and cTnT concentrations were concentration- and time-dependently increasing in response to daunorubicin exposure and were negatively exponentially related to cardiomyocyte viability. With 3microM daunorubicin, the relative increase of AUC of cTnT and cTnI was 2.4- and 5.3-fold higher than the increase of LDH activity, respectively. In rabbits, the daunorubicin-induced cardiomyopathy was associated with progressive increase of both cTnT and cTnI. Although the correlation between cTnT and cTnI cumulative release (AUCs) was found (R=0.81; P<0.01) and both cardiac troponins corresponded well with the echocardiographically-assessed systolic dysfunction (R=0.83 and 0.81 for cTnT and cTnI, respectively; P<0.001), the first significant increase in cTnI levels was observed earlier (at a cumulative daunorubicin dose of 200mg/m(2)) than with cTnT (350mg/m(2)). In conclusion, our study has confirmed cTnT and cTnI as very sensitive and specific markers of anthracycline-induced cardiotoxicity. The troponins can become not only the bridge between the clinical and experimental studies of drug-induced cardiotoxicity but also the linkage between the preclinical experiments in vitro and in vivo.
    Toxicology 08/2007; 237(1-3):218-28. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyridoxal-derived aroylhydrazone iron chelators have been previously shown as effective cardioprotectants against chronic anthracycline cardiotoxicity. In this study we focused on a novel salicylaldehyde analogue (salicylaldehyde isonicotinoyl hydrazone, SIH), which has been recently demonstrated to possess marked and dose-dependent protective effects against oxidative injury of cardiomyocytes. Therefore, in the present study the cardioprotective potential of SIH against daunorubicin (DAU) cardiotoxicity was assessed in vitro (isolated rat ventricular cardiomyocytes; DAU 10 microM, 48 h exposure) as well as in vivo (chronic DAU-induced cardiomyopathy in rabbits; DAU 3mg/kg, i.v. weekly, 10 weeks). In vitro, SIH (3-100 microM) was able to partially, but significantly decrease the LDH leakage from cardiomyocytes. In vivo, SIH co-administration was capable to reduce (SIH dose of 0.5mg/kg, i.v.) or even to completely prevent (1.0mg/kg, i.v.) the DAU-induced mortality. Moreover, the latter dose of the chelator significantly improved the left ventricular function (LV dP/dt(max)=1185+/-80 kPa/s versus 783+/-53 kPa/s in the DAU group; P<0.05) and decreased the severity of the myocardial morphological changes as well as the plasma levels of cardiac troponin T. Unfortunately, further escalation of the SIH dose (to 2.5mg/kg) resulted in a nearly complete reversal of the protective effects as judged by the overall mortality, functional, morphological as well as biochemical examinations. Hence, this study points out that aroylhydrazone iron chelators can induce a significant cardioprotection against anthracycline cardiotoxicity; however, they share the curious dose-response relationship which is unrelated to the chemical structure or the route of the administration of the chelator.
    Toxicology 06/2007; 235(3):150-66. · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of anthracycline anticancer drugs is limited by a cumulative, dose-dependent cardiac toxicity. Iron chelation has long been considered as a promising strategy to limit this unfavorable side effect, either by restoring the disturbed cellular iron homeostasis or by removing redox-active iron, which may promote anthracycline-induced oxidative stress. Aroylhydrazone lipophilic iron chelators have shown promising results in the rabbit model of daunorubicin-induced cardiomyopathy as well as in cellular models. The lack of interference with the antiproliferative effects of the anthracyclines also favors their use in clinical settings. The dose, however, should be carefully titrated to prevent iron depletion, which apparently also applies for other strong iron chelators. We have shown that a mere ability of a compound to chelate iron is not the sole determinant of a good cardioprotector and the protective potential does not directly correlate with the ability of the chelators to prevent hydroxyl radical formation. These findings, however, do not weaken the role of iron in doxorubicin cardiotoxicity as such, they rather appeal for further investigations into the molecular mechanisms how anthracyclines interact with iron and how iron chelation may interfere with these processes.
    Cardiovascular Toxicology 02/2007; 7(2):145-50. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anthracycline cardiotoxicity represents a serious risk of anticancer chemotherapy. The aim of the present pilot study was to compare the potential of both the left ventricular (LV) filling pattern evaluation and cardiac troponin T (cTnT) plasma levels determination for the early detection of daunorubicin-induced cardiotoxicity in rabbits. The echocardiographic measurements of transmitral LV inflow as well as cTnT determinations were performed weekly for 10 weeks in daunorubicin (3 mg/kg weekly) and control groups (n=5, each). Surprisingly, no significant changes in LV-filling pattern were observed through the study, most likely due to the xylazine-containing anesthesia, necessary for appropriate resolving of the E and A waves. In contrast to the echographic measurement, the dP/dt(min) index obtained invasively at the end of the study revealed a significant impairment in LV relaxation, which was further supported by observed disturbances in myocardial collagen content and calcium homeostasis. However, at the same time cTnT plasma levels were progressively rising in the daunorubicin-treated animals from the fifth week (0.024+/-0.008 microg/l) until the end of the experiment (0.186+/-0.055 microg/l). Therefore, in contrast to complicated non-invasive evaluation of diastolic function, cTnT is shown to be an early and sensitive marker of anthracycline-induced cardiotoxicity in the rabbit model.
    Physiological research / Academia Scientiarum Bohemoslovaca 02/2007; 56(5):535-45. · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinases (MMPs), activated by oxidative stress, play a key role during cardiac remodeling. In the present study we aimed to assess the role of MMPs in experimental cardiomyopathy induced by repeated 10-week administration of daunorubicin (3 mg/kg i.v.) to rabbits. In the daunorubicin group, the plasma cardiac troponin T levels (cTnT - a marker of myocardial necrosis) were significantly increased (p<0.05), commencing with the 8th administration compared with the controls. The amount of collagen (an estimate of fibrosis) was also significantly higher in the daunorubicin group (13.39 +/- 0.97 mg/g wet weight) compared to the control group (10.03 +/- 0.65 mg/g wet weight). In both groups, the LV MMP-activity was observed only in the gelatine substrate in the 70 kDa region (MMP-2), while no MMPs activities were detectable either in the casein or collagen containing zymograms. At the end of the experiment, the MMP-2 activity was slightly up-regulated (by 16 %) compared with the controls.
    Acta medica (Hradec Králové) / Universitas Carolina, Facultas Medica Hradec Králové 01/2007; 50(2):109-11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to analyze the ECG time intervals in the course of the development of chronic anthracycline cardiomyopathy in rabbits. Furthermore, this approach was employed to study the effects of a model cardioprotective drug (dexrazoxane) and two novel iron chelating compounds--salicylaldehyde isonicotinoyl hydrazone (SIH) and pyridoxal 2-chlorobenzoyl hydrazone (o-108). Repeated daunorubicin administration induced a significant and progressive prolongation of the QRS complex commencing with the eighth week of administration. At the end of the study, we identified a significant correlation between QRS duration and the contractility index dP/dt(max) (r = -0.81; P<0.001) as well as with the plasma concentrations of cardiac troponin T (r = 0.78; P<0.001). In contrast, no alterations in ECG time intervals were revealed in the groups co-treated with either dexrazoxane or both novel cardioprotective drugs (SIH, o-108). Hence, in this study, the QRS duration is for the first time shown as a parameter suitable for the non-invasive evaluation of the anthracycline cardiotoxicity and cardioprotective effects of both well established and investigated drugs. Moreover, our results strongly suggest that novel iron chelators (SIH and o-108) merit further study as promising cardioprotective drugs against anthracycline cardiotoxicity.
    Physiological research / Academia Scientiarum Bohemoslovaca 01/2007; 56(2):251-4. · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron chelation is the only pharmacological intervention against anthracycline cardiotoxicity whose effectiveness has been well documented both experimentally and clinically. In this study, we aimed to assess whether pyridoxal 2-chlorobenzoyl hydrazone (o-108, a strong iron chelator) can provide effective protection against daunorubicin (DAU)-induced chronic cardiotoxicity in rabbits. First, using the HL-60 leukemic cell line, it was shown that o-108 has no potential to blunt the antiproliferative efficacy of DAU. Instead, o-108 itself moderately inhibited cell proliferation. In vivo, chronic DAU treatment (3 mg/kg weekly for 10 weeks) induced mortality (33%), left ventricular (LV) dysfunction, a troponin T rise, and typical morphological LV damage. In contrast, all animals treated with 10 mg/kg o-108 before DAU survived without a significant drop in the LV ejection fraction (63.2 +/- 0.5 versus 59.2 +/- 1.0%, beginning versus end, not significant), and their cardiac contractility (dP/dt(max)) was significantly higher than in the DAU-only group (1131 +/- 125 versus 783 +/- 53 kPa/s, p < 0.05), which corresponded with histologically assessed lower extent and intensity of myocardial damage. Although higher o-108 dose (25 mg/kg) was well tolerated when administered alone, in combination with DAU it led to rather paradoxical and mostly negative results regarding both cardioprotection and overall mortality. In conclusion, we show that shielding of free intracellular iron using a potent lipophilic iron chelator is able to offer a meaningful protection against chronic anthracycline cardiotoxicity. However, this approach lost its potential with the higher chelator dose, which suggests that iron might play more complex role in the pathogenesis of this disease than previously assumed.
    Journal of Pharmacology and Experimental Therapeutics 01/2007; 319(3):1336-47. · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A high performance liquid chromatographic method for the determination of a biocompatible iron chelator, pyridoxal 2-chlorobenzoyl hydrazone (o-108), in rabbit plasma was developed and validated. The separation was achieved on a C18 column with the mobile phase composed of a mixture of 0.01 M phosphate buffer (pH 6) with the addition of EDTA (2 mM), methanol and acetonitrile (42:24:14; v/v/v). The method was validated with respect to selectivity, linearity (0.8-150 microg/mL), intra- and inter-day variability and stability. This method was successfully applied to the analysis of the samples obtained from a pilot pharmacokinetic experiment, in which the chelator was administered intravenously to rabbits.
    Journal of Chromatography B 08/2006; 838(2):107-12. · 2.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac troponin T (cTnT) and cardiac troponin I (cTnI) are considered to be the most specific and sensitive biochemical markers of myocardial damage. Troponins have been studied in a wide range of clinical settings, including heart failure; however, there are few data on the role of regulatory proteins in the pathogenesis of heart failure, although a few interesting hypotheses have been proposed. A considerable body of evidence favours the view that alteration of the myocardial thin filament is the primary event leading to defective contractility of the failing myocardium, while the changes in Ca(2+) handling are a compensatory response. A better understanding of the role of regulatory proteins under different physiological and pathological conditions could lead to new therapeutic approaches in heart failure. Recently, calcium sensitisation has been proposed as a novel method by which cardiac performance may be enhanced via an increase in the affinity of troponin C for calcium but without affecting intracellular calcium concentration. To date, the only calcium sensitizer used in clinical practice is levosimendan.
    European Journal of Heart Failure 07/2006; 8(4):333-42. · 5.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, pyridoxal 2-chlorobenzoyl hydrazone (o-108) has been identified as an effective iron chelator [Link et al., Blood 2003; 101: 4172-79]. Since chronic treatment would be necessary in its potential indications, in the present study, the safety and tolerability of this agent after repeated administration was determined. Three doses of o-108 (25, 50, 100 mg/kg, in 10% Cremophor EL) were administered intraperitoneally, once weekly, for 10 weeks to three groups (n=5 each) of Chinchilla male rabbits. The effects on biochemical, haematological and cardiovascular parameters were examined during the experiment; histopathological examination was performed at the end of the experiment. Results were compared with control (saline 2 mL/kg, n=11) and vehicle groups (10% Cremophor EL, 2 mL/kg, n=12). No premature deaths occurred; the well-being of animals was evidenced by their body weight gain, although lower gain was observed with the highest dose (100 mg/kg). Significant elevations of cardiac troponin T plasma concentrations were observed with the highest dose of o-108, but no abnormalities were found in the cardiovascular function and only minor and inconsistent changes in haematological and biochemical parameters were observed. Histopathological examinations of selected organs revealed only weak and reversible changes through all studied groups. Thus, the data from this study suggest that o-108 remains a promising drug from the standpoint of the possibility of its repeated administration and warrants further investigation.
    Human &amp Experimental Toxicology 12/2005; 24(11):581-9. · 1.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that oxidative stress is a common denominator in many aspects of cardiovascular pathogenesis. Free cellular iron plays a crucial catalytic role in the formation of highly toxic hydroxyl radicals, and thereby it may aggravate the contribution of oxidative stress to cardiovascular disease. Therefore, iron chelation may be an effective therapeutic approach, but the progress in this area is hindered by the lack of effective agents. In this study, using the rat heart myoblast-derived cell line H9c2, we aimed to investigate whether the novel lipophilic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) protects the cells against hydrogen peroxide (H2O2)-induced cytotoxicity. Exposure of cells to 100 micromol/l H2O2 has within 4 h induced a complete dissipation of their mitochondrial membrane potential (DeltaPsim). Co-treatment with SIH dose-dependently reduced (EC50=0.8 micromol/l) or even completely abolished (3 micromol/l) this collapse. Furthermore, the latter SIH concentration was capable to fully prevent alterations in cell morphology, and inhibited both apoptosis (annexin-V staining, nuclear chromatin shrinkage, TUNEL positivity) and necrosis (propidium iodide staining), even 24 h after the H2O2 exposure. In comparison, deferoxamin (a commercially available hydrophilic iron chelator used in clinical practice and most previous studies) was cytoprotective only at three-order higher and clinically unachievable concentrations (EC50=1300 micromol/l). Thus, in this study, we present iron chelation as a very powerful tool by which oxidative stress-induced myocardial damage can be prevented.
    Journal of Molecular and Cellular Cardiology 09/2005; 39(2):345-54. · 5.15 Impact Factor