Steven Jones

BC Cancer Agency, Vancouver, British Columbia, Canada

Are you Steven Jones?

Claim your profile

Publications (75)838.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease. Here we provide a whole genome sequencing-based perspective of DLBCL mutational complexity by characterizing 40 de novo DLBCL cases and 13 DLBCL cell lines and combining these data with DNA copy number analysis and RNA-seq from an extended cohort of 96 cases. Our analysis identified widespread genomic rearrangements including evidence for chromothripsis as well as the presence of known and novel fusion transcripts. We uncovered new gene targets of recurrent somatic mutation and genes that are targeted by focal somatic deletions in this disease. We highlight the recurrence of GCB-restricted mutations affecting genes that encode the S1P receptor and two small GTPases (GNA13 and GNAI2) that together converge on regulation of B-cell homing. We further analyzed our data to approximate the relative temporal order in which some recurrent mutations were acquired and demonstrate that ongoing acquisition of mutations and intra-tumoral clonal heterogeneity are common features of DLBCL. This study further improves our understanding of the processes and pathways involved in lymphomagenesis and some of the pathways mutated here may indicate new avenues for therapeutic intervention.
    Blood 05/2013; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic profiling has identified a subtype of high-risk B-progenitor acute lymphoblastic leukemia (B-ALL) with alteration of IKZF1, a gene expression profile similar to BCR-ABL1-positive ALL and poor outcome (Ph-like ALL). The genetic alterations that activate kinase signaling in Ph-like ALL are poorly understood. We performed transcriptome and whole genome sequencing on 15 cases of Ph-like ALL and identified rearrangements involving ABL1, JAK2, PDGFRB, CRLF2, and EPOR, activating mutations of IL7R and FLT3, and deletion of SH2B3, which encodes the JAK2-negative regulator LNK. Importantly, several of these alterations induce transformation that is attenuated with tyrosine kinase inhibitors, suggesting the treatment outcome of these patients may be improved with targeted therapy.
    Cancer cell 08/2012; 22(2):153-66. · 25.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.
    Nature 04/2012; 486(7403):395-9. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
    Blood 11/2011; 119(2):388-98. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The "arms race" relationship between transposable elements (TEs) and their host has promoted a series of epigenetic silencing mechanisms directed against TEs. Retrotransposons, a class of TEs, are often located in repressed regions and are thought to induce heterochromatin formation and spreading. However, direct evidence for TE-induced local heterochromatin in mammals is surprisingly scarce. To examine this phenomenon, we chose two mouse embryonic stem (ES) cell lines that possess insertionally polymorphic retrotransposons (IAP, ETn/MusD, and LINE elements) at specific loci in one cell line but not the other. Employing ChIP-seq data for these cell lines, we show that IAP elements robustly induce H3K9me3 and H4K20me3 marks in flanking genomic DNA. In contrast, such heterochromatin is not induced by LINE copies and only by a minority of polymorphic ETn/MusD copies. DNA methylation is independent of the presence of IAP copies, since it is present in flanking regions of both full and empty sites. Finally, such spreading into genes appears to be rare, since the transcriptional start sites of very few genes are less than one Kb from an IAP. However, the B3galtl gene is subject to transcriptional silencing via IAP-induced heterochromatin. Hence, although rare, IAP-induced local heterochromatin spreading into nearby genes may influence expression and, in turn, host fitness.
    PLoS Genetics 09/2011; 7(9):e1002301. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation and histone H3 lysine 9 trimethylation (H3K9me3) play important roles in silencing of genes and retroelements. However, a comprehensive comparison of genes and repetitive elements repressed by these pathways has not been reported. Here we show that in mouse embryonic stem cells (mESCs), the genes upregulated after deletion of the H3K9 methyltransferase Setdb1 are distinct from those derepressed in mESC deficient in the DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b, with the exception of a small number of primarily germline-specific genes. Numerous endogenous retroviruses (ERVs) lose H3K9me3 and are concomitantly derepressed exclusively in SETDB1 knockout mESCs. Strikingly, ~15% of upregulated genes are induced in association with derepression of promoter-proximal ERVs, half in the context of "chimeric" transcripts that initiate within these retroelements and splice to genic exons. Thus, SETDB1 plays a previously unappreciated yet critical role in inhibiting aberrant gene transcription by suppressing the expression of proximal ERVs.
    Cell stem cell 06/2011; 8(6):676-87. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ChIP-seq combines chromatin immunoprecipitation with massively parallel short-read sequencing. While it can profile genome-wide in vivo transcription factor-DNA association with higher sensitivity, specificity, and spatial resolution than ChIP-chip, it poses new challenges for statistical analysis that derive from the complexity of the biological systems characterized and from variability and biases in its sequence data. We propose a method called PICS (Probabilistic Inference for ChIP-seq) for identifying regions bound by transcription factors from aligned reads. PICS identifies binding event locations by modeling local concentrations of directional reads, and uses DNA fragment length prior information to discriminate closely adjacent binding events via a Bayesian hierarchical t-mixture model. It uses precalculated, whole-genome read mappability profiles and a truncated t-distribution to adjust binding event models for reads that are missing due to local genome repetitiveness. It estimates uncertainties in model parameters that can be used to define confidence regions on binding event locations and to filter estimates. Finally, PICS calculates a per-event enrichment score relative to a control sample, and can use a control sample to estimate a false discovery rate. Using published GABP and FOXA1 data from human cell lines, we show that PICS' predicted binding sites were more consistent with computationally predicted binding motifs than the alternative methods MACS, QuEST, CisGenome, and USeq. We then use a simulation study to confirm that PICS compares favorably to these methods and is robust to model misspecification.
    Biometrics 03/2011; 67(1):151-63. · 1.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATRX is an X-linked gene of the SWI/SNF family, mutations in which cause syndromal mental retardation and downregulation of α-globin expression. Here we show that ATRX binds to tandem repeat (TR) sequences in both telomeres and euchromatin. Genes associated with these TRs can be dysregulated when ATRX is mutated, and the change in expression is determined by the size of the TR, producing skewed allelic expression. This reveals the characteristics of the affected genes, explains the variable phenotypes seen with identical ATRX mutations, and illustrates a new mechanism underlying variable penetrance. Many of the TRs are G rich and predicted to form non-B DNA structures (including G-quadruplex) in vivo. We show that ATRX binds G-quadruplex structures in vitro, suggesting a mechanism by which ATRX may play a role in various nuclear processes and how this is perturbed when ATRX is mutated.
    Cell 10/2010; 143(3):367-78. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma (NB) is an aggressive tumor of the developing peripheral nervous system that remains difficult to cure in the advanced stages. The poor prognosis for high-risk NB patients is associated with common disease recurrences that fail to respond to available therapies. NB tumor-initiating cells (TICs), isolated from metastases and primary tumors, may escape treatment and contribute to tumor relapse. New therapies that target the TICs may therefore prevent or treat tumor recurrences. We undertook a system-level characterization of NB TICs to identify potential drug targets against recurrent NB. We used next-generation RNA sequencing and/or human exon arrays to profile the transcriptomes of 11 NB TIC lines from six NB patients, revealing genes that are highly expressed in the TICs compared with normal neural crest-like cells and unrelated cancer tissues. We used gel-free two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry to confirm the presence of proteins corresponding to the most abundant TIC-enriched transcripts, thereby providing validation to the gene expression result. Our study revealed that genes in the BRCA1 signaling pathway are frequently misexpressed in NB TICs and implicated Aurora B kinase as a potential drug target for NB therapy. Treatment with a selective AURKB inhibitor was cytotoxic to NB TICs but not to the normal neural crest-like cells. This work provides the first high-resolution system-level analysis of the transcriptomes of 11 primary human NB TICs and identifies a set of candidate NB TIC-enriched transcripts for further development as therapeutic targets.
    Clinical Cancer Research 09/2010; 16(18):4572-82. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Follicular lymphoma (FL) and the GCB subtype of diffuse large B-cell lymphoma (DLBCL) derive from germinal center B cells. Targeted resequencing studies have revealed mutations in various genes encoding proteins in the NF-kappaB pathway that contribute to the activated B-cell (ABC) DLBCL subtype, but thus far few GCB-specific mutations have been identified. Here we report recurrent somatic mutations affecting the polycomb-group oncogene EZH2, which encodes a histone methyltransferase responsible for trimethylating Lys27 of histone H3 (H3K27). After the recent discovery of mutations in KDM6A (UTX), which encodes the histone H3K27me3 demethylase UTX, in several cancer types, EZH2 is the second histone methyltransferase gene found to be mutated in cancer. These mutations, which result in the replacement of a single tyrosine in the SET domain of the EZH2 protein (Tyr641), occur in 21.7% of GCB DLBCLs and 7.2% of FLs and are absent from ABC DLBCLs. Our data are consistent with the notion that EZH2 proteins with mutant Tyr641 have reduced enzymatic activity in vitro.
    Nature Genetics 02/2010; 42(2):181-5. · 35.21 Impact Factor
  • Source
    BMC Bioinformatics 01/2010; · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in next generation sequencing have made it possible to precisely characterize all somatic coding mutations that occur during the development and progression of individual cancers. Here we used these approaches to sequence the genomes (>43-fold coverage) and transcriptomes of an oestrogen-receptor-alpha-positive metastatic lobular breast cancer at depth. We found 32 somatic non-synonymous coding mutations present in the metastasis, and measured the frequency of these somatic mutations in DNA from the primary tumour of the same patient, which arose 9 years earlier. Five of the 32 mutations (in ABCB11, HAUS3, SLC24A4, SNX4 and PALB2) were prevalent in the DNA of the primary tumour removed at diagnosis 9 years earlier, six (in KIF1C, USP28, MYH8, MORC1, KIAA1468 and RNASEH2A) were present at lower frequencies (1-13%), 19 were not detected in the primary tumour, and two were undetermined. The combined analysis of genome and transcriptome data revealed two new RNA-editing events that recode the amino acid sequence of SRP9 and COG3. Taken together, our data show that single nucleotide mutational heterogeneity can be a property of low or intermediate grade primary breast cancers and that significant evolution can occur with disease progression.
    Nature 10/2009; 461(7265):809-13. · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a new method, Tag-seq, which employs ultra high-throughput sequencing of 21 base pair cDNA tags for sensitive and cost-effective gene expression profiling. We compared Tag-seq data to LongSAGE data and observed improved representation of several classes of rare transcripts, including transcription factors, antisense transcripts, and intronic sequences, the latter possibly representing novel exons or genes. We observed increases in the diversity, abundance, and dynamic range of such rare transcripts and took advantage of the greater dynamic range of expression to identify, in cancers and normal libraries, altered expression ratios of alternative transcript isoforms. The strand-specific information of Tag-seq reads further allowed us to detect altered expression ratios of sense and antisense (S-AS) transcripts between cancer and normal libraries. S-AS transcripts were enriched in known cancer genes, while transcript isoforms were enriched in miRNA targeting sites. We found that transcript abundance had a stronger GC-bias in LongSAGE than Tag-seq, such that AT-rich tags were less abundant than GC-rich tags in LongSAGE. Tag-seq also performed better in gene discovery, identifying >98% of genes detected by LongSAGE and profiling a distinct subset of the transcriptome characterized by AT-rich genes, which was expressed at levels below those detectable by LongSAGE. Overall, Tag-seq is sensitive to rare transcripts, has less sequence composition bias relative to LongSAGE, and allows differential expression analysis for a greater range of transcripts, including transcripts encoding important regulatory molecules.
    Genome Research 07/2009; 19(10):1825-35. · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ebola Zaire virus is highly pathogenic for humans, with case fatality rates approaching 90% in large outbreaks in Africa. The virus replicates in macrophages and dendritic cells (DCs), suppressing production of type I interferons (IFNs) while inducing the release of large quantities of proinflammatory cytokines. Although the viral VP35 protein has been shown to inhibit IFN responses, the mechanism by which it blocks IFN production has not been fully elucidated. We expressed VP35 from a mouse-adapted variant of Ebola Zaire virus in murine DCs by retroviral gene transfer, and tested for IFN transcription upon Newcastle Disease virus (NDV) infection and toll-like receptor signaling. We found that VP35 inhibited IFN transcription in DCs following these stimuli by disabling the activity of IRF7, a transcription factor required for IFN transcription. By yeast two-hybrid screens and coimmunoprecipitation assays, we found that VP35 interacted with IRF7, Ubc9 and PIAS1. The latter two are the host SUMO E2 enzyme and E3 ligase, respectively. VP35, while not itself a SUMO ligase, increased PIAS1-mediated SUMOylation of IRF7, and repressed Ifn transcription. In contrast, VP35 did not interfere with the activation of NF-kappaB, which is required for induction of many proinflammatory cytokines. Our findings indicate that Ebola Zaire virus exploits the cellular SUMOylation machinery for its advantage and help to explain how the virus overcomes host innate defenses, causing rapidly overwhelming infection to produce a syndrome resembling fulminant septic shock.
    PLoS Pathogens 07/2009; 5(6):e1000493. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The pathogenesis of these tumors is unknown. Moreover, their histopathological diagnosis can be challenging, and there is no curative treatment beyond surgery. We analyzed four adult-type GCTs using whole-transcriptome paired-end RNA sequencing. We identified putative GCT-specific mutations that were present in at least three of these samples but were absent from the transcriptomes of 11 epithelial ovarian tumors, published human genomes, and databases of single-nucleotide polymorphisms. We confirmed these variants by direct sequencing of complementary DNA and genomic DNA. We then analyzed additional tumors and matched normal genomic DNA, using a combination of direct sequencing, analyses of restriction-fragment-length polymorphisms, and TaqMan assays. All four index GCTs had a missense point mutation, 402C-->G (C134W), in FOXL2, a gene encoding a transcription factor known to be critical for granulosa-cell development. The FOXL2 mutation was present in 86 of 89 additional adult-type GCTs (97%), in 3 of 14 thecomas (21%), and in 1 of 10 juvenile-type GCTs (10%). The mutation was absent in 49 SCSTs of other types and in 329 unrelated ovarian or breast tumors. Whole-transcriptome sequencing of four GCTs identified a single, recurrent somatic mutation (402C-->G) in FOXL2 that was present in almost all morphologically identified adult-type GCTs. Mutant FOXL2 is a potential driver in the pathogenesis of adult-type GCTs.
    New England Journal of Medicine 06/2009; 360(26):2719-29. · 51.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The viral protein VP35 of ebolavirus (EBOV) is implicated to have diverse roles in the viral life cycle. We employed a yeast two-hybrid screen to search for VP35 binding partners and identified the cytoplasmic dynein light chain (DLC8) as a protein that interacts with VP35. Mapping analysis unraveled a consensus motif, SQTQT, within VP35 through which VP35 binds to DLC8. The disruption of DLC8 binding does not affect the ability of VP35 to inhibit type I IFN production. Given that VP35 from various EBOV species interacts with DLC8, this interaction may have a role in regulating the EBOV life cycle.
    Journal of Virology 05/2009; 83(13):6952-6. · 5.08 Impact Factor
  • Cytokine 01/2009; 48(1):15-15. · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mature mammary epithelial cells are generated from undifferentiated precursors through a hierarchical process, but the molecular mechanisms involved, particularly in the human mammary gland, are poorly understood. To address this issue, we isolated highly purified subpopulations of primitive bipotent and committed luminal progenitor cells as well as mature luminal and myoepithelial cells from normal human mammary tissue and compared their transcriptomes obtained using three different methods. Elements unique to each subset of mammary cells were identified, and changes that accompany their differentiation in vivo were shown to be recapitulated in vitro. These include a stage-specific change in NOTCH pathway gene expression during the commitment of bipotent progenitors to the luminal lineage. Functional studies further showed NOTCH3 signaling to be critical for this differentiation event to occur in vitro. Taken together, these findings provide an initial foundation for future delineation of mechanisms that perturb primitive human mammary cell growth and differentiation.
    Cell stem cell 08/2008; 3(1):109-18. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequence-based methods for transcriptome characterization have typically relied on generation of either serial analysis of gene expression tags or expressed sequence tags. Although such approaches have the potential to enumerate transcripts by counting sequence tags derived from them, they typically do not robustly survey the majority of transcripts along their entire length. Here we show that massively parallel sequencing of randomly primed cDNAs, using a next-generation sequencing-by-synthesis technology, offers the potential to generate relative measures of mRNA and individual exon abundance while simultaneously profiling the prevalence of both annotated and novel exons and exon-splicing events. This technique identifies known single nucleotide polymorphisms (SNPs) as well as novel single-base variants. Analysis of these variants, and previously unannotated splicing events in the HeLa S3 cell line, reveals an overrepresentation of gene categories including those previously implicated in cancer.
    BioTechniques 08/2008; 45(1):81-94. · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foxa2 (HNF3 beta) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIP-Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the approximately 11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function.
    Nucleic Acids Research 08/2008; 36(14):4549-64. · 8.81 Impact Factor

Publication Stats

6k Citations
838.27 Total Impact Points

Institutions

  • 2007–2013
    • BC Cancer Agency
      Vancouver, British Columbia, Canada
    • BC Cancer Research Centre
      • Terry Fox Laboratory
      Vancouver, British Columbia, Canada
    • Hokkaido University
      • Department of Global Health and Epidemiology
      Sapporo-shi, Hokkaido, Japan
  • 2010
    • University of British Columbia - Vancouver
      Vancouver, British Columbia, Canada
  • 2007–2009
    • Genome British Columbia
      Vancouver, British Columbia, Canada
  • 2003–2009
    • National Microbiology Laboratory, Canada
      Winnipeg, Manitoba, Canada
  • 2008
    • Michael Smith Genome Sciences Centre
      Calgary, Alberta, Canada
  • 2006
    • University of Manitoba
      Winnipeg, Manitoba, Canada
    • The University of Tokyo
      • Institute of Medical Science
      Tokyo, Tokyo-to, Japan