Shuisen Zhou

National Institute of Parasitic Diseases, Shanghai, Shanghai Shi, China

Are you Shuisen Zhou?

Claim your profile

Publications (10)41.44 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Qi Gao and colleagues describe China's 1-3-7 strategy for eliminating malaria: reporting of malaria cases within one day, their confirmation and investigation within three days, and the appropriate public health response to prevent further transmission within seven days.
    PLoS Medicine 05/2014; 11(5):e1001642. · 15.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: China is implementing a National Malaria Elimination Programme. A high proportion of clinically diagnosed malaria cases is reported in some provinces of China. In order to understand the exact situation and make clear the nature of these patients, it is of much importance to make case verifications, particularly from the pathogenic perspective. METHODS: Guizhou Province was targeted because of its high proportion of clinically diagnosed malaria cases. After random selection of around 10% of malaria cases from 1 May 2011 to 30 April 2012, reported through the national web-based case reporting system from this province, field verifications were made on 14--17 May 2012 as follows. Firstly, the reported information of each case was rechecked with the onsite case registrations and investigation forms, and an in-depth interview was conducted with each patient. Secondly, the patient's blood smears kept by local CDC were cross-checked microscopically by a national experienced microscopist. Thirdly, two kinds of polymerase chain reaction (PCRs). including Tag-primer nested/multiplex PCR (UT-PCR) based on cytochrome oxidase gene (cox I) and nested PCR based on 18s rRNA gene were performed simultaneously using local CDC kept filter paper of dry blood samples to identify the Plasmodium spp. RESULTS: Twelve out of 152 malaria cases were selected, including nine clinically diagnosed malaria cases, two confirmed falciparum malaria cases and one confirmed vivax malaria case. The original case documents on the site were completely in conformity with their reported data, and all the patients recalled their malaria symptoms and being cured only after consuming the corresponding anti-malarial drugs. Moreover, the re-examination results of microscopy and PCR were exactly in agreement with the original tests. DISCUSSION: No inconsistent results were found against the reported case information in the present study and the reasons for clinically diagnosed patients remains unclear. Uniform and standardized sample collection and processing should be trained among clinicians, more sensitive and specific techniques should be explored to used in malaria diagnosis. A further study is needed in order to be more observationally focussed rather than retrospective.
    Malaria Journal 04/2013; 12(1):130. · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The aim of this study was to evaluate the clinical outcome after seven-day artesunate monotherapy for uncomplicated Plasmodium falciparum malaria in Yingjiang County along the China-Myanmar border and investigate genetic polymorphisms in the P. falciparum chloroquine-resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr), dihydropteroate synthase (pfdhps) and ATPase (pfatp6) genes. METHODS: Patients [greater than or equal to] one year of age with fever (axillary temperature [greater than or equal to]37.5 degreesC) or history of fever and P. falciparum mono-infection were included. Patients received anti-malarial treatment with artesunate (total dose of 16 mg/kg over seven days) by directly observed therapy. After a 28- day follow-up, treatment efficacy and effectiveness were assessed based on clinical and parasitological outcomes. Treatment failure was defined as recrudescence of the original parasite and distinguished with new infection confirmed by PCR. Analysis of gene mutation and amplification were performed by nested polymerase chain reaction. RESULTS: Sixty-five patients were enrolled; 10 withdrew from the study, and six were lost to follow-up. All but two patients demonstrated adequate clinical and parasitological response; 12 had detectable parasitaemia on day 3. These two patients were confirmed to be new infection by PCR. The efficacy of artesunate was 95.9 %. The pfcrt mutation in codon 76 was found in all isolates (100 %), and mutations in codons 71 and 72 were found in 4.8 % of parasite isolates. No mutation of pfmdr1 (codons 86 or 1246) was found. Among all samples, 5.1 % were wild type for pfdhfr, whereas the other samples had mutations in four codons (51, 59, 108 and 164), and mutations in pfdhps (codons 436, 437, 540 and 581) were found in all isolates. No samples had mutations in pfatp6 codons 623 or 769, but two new mutations (N683K and R756K) were found in 4.6 % and 9.2 % of parasite isolates, respectively. CONCLUSION: Plasmodium falciparum infection was associated with slow parasite clearance and suspected artemisinin resistance at the China-Myanmar border area. The prevalence of pfcrt 76 T and markers for SP resistance are still high. It should be strengthened further on parasite clearance time or clearance half life to confirm the resistance status, and molecular epidemiology should provide complementary information to assess the appropriateness of current policies based on artemisinin derivatives.
    Malaria Journal 08/2012; 11(1):278. · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mutations in Plasmodium falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr), dihydropteroate synthase (pfdhps) and ATPase (pfatp6) genes were associated with anti-malaria drug resistance. The aim of this study was to investigate the prevalence of polymorphisms in pfcrt, pfmdr1, pfdhfr, pfdhps and pfatp6 in Yunnan Province. Finger-prick blood samples were collected from malaria-positive patients from Yunnan Province in 2009-2010. Single-nucleotide polymorphisms (SNPs) in the resistance-related genes were analysed by various PCR-based methods. A total of 108 blood samples were collected. Although chloroquine has not been used to treat falciparum malaria for nearly 30 years, 95.3% of the parasites still carried the pfcrt K76T mutation, whereas the majority of isolates displayed the wild-type pfmdr1 N86 and D1246 sequences. The molecular level of sulphadoxine-pyrimethamine resistance in P. falciparum was high. The most prevalent mutation was pfdhfr C59R (95.9%), whereas the frequencies of the quadruple, triple and double mutants were 22.7% (N51I/C59R/S108N/I164L), 51.5% (N51I/C59R/S108N, N51I/C59R/I164L and C59R/S108N/ I164L) and 21.6% (N51I/ C59R, C59R/S108N and C59R/I164L), respectively. A437G (n = 77) and K540E (n = 71) were the most prevalent mutations in pfdhps, and 52.7% of the samples were double mutants, among which A437G/K540E was the most common double mutation (37/49). Quadruple mutants were found in 28.0% (26/93) of samples. A total of 8.6% of isolates (8/93) carried the S436A/A437G/A581G triple mutation. No mutations were found in pfatp6 codons 623 or 769, but another two mutations (N683K and R756K) were found in 4.6% (3/97) and 9.2% (6/97) of parasite isolates, respectively. This study identified a high frequency of mutations in pfcrt, pfdhfr and pfdhps associated with CQ and SP resistance in P. falciparum and no mutations linked to artemisinin resistance (pfatp6). Molecular epidemiology should be included in routine surveillance protocols and used to provide complementary information to assess the appropriateness of the current national anti-malarial drug policy.
    Malaria Journal 07/2012; 11:243. · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant reductions in the overall burden of malaria in the 20th century, this disease still represents a significant public health problem in China, especially in central areas. Understanding the spatio-temporal distribution of malaria is essential in the planning and implementing of effective control measures. In this study, normalized meteorological factors were incorporated in spatio-temporal models. Seven models were established in WinBUGS software by using Bayesian hierarchical models and Markov Chain Monte Carlo methods. M₁, M₂, and M₃ modeled separate meteorological factors, and M₃, which modeled rainfall performed better than M₁ and M₂, which modeled average temperature and relative humidity, respectively. M₇ was the best fitting models on the basis of based on deviance information criterion and predicting errors. The results showed that the way rainfall influencing malaria incidence was different from other factors, which could be interpreted as rainfall having a greater influence than other factors.
    The American journal of tropical medicine and hygiene 09/2011; 85(3):560-7. · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria has been endemic in Linzhi Prefecture in the Tibet Autonomous Region (TAR) over the past 20 years, especially in Motou County with a highest incidence in the country in recent years. Meteorological factors, such as rainfall, temperature and relative humidity in Motou County were unique compared to other areas in Tibet as well as other parts of China, thus the objective of this work was to analyse the temporal correlation between malaria incidence and meteorological factors in Motou County, in order to seek the particular interventions for malaria control. The meteorological and malaria data during 1986-2009 in Motuo County were studied to analyse the statistical relationship between meteorological data time series and malaria incidence data series. Temporal correlation between malaria incidence and meteorological factors were analyzed using several statistical methods. Spearman correlation analysis was conducted to examine the association between monthly malaria incidence and meteorological variables. Cross-correlation analysis of monthly malaria incidence series and monthly meteorological data time series revealed the time lag(s) of meteorological factors preceding malaria at which the series showed strongest correlation. Multiplicative seasonal auto-regressive integrated moving average (SARIMA) models were used in the cross-correlation analysis with pre-whitening which remove seasonality and auto-correlation of meteorological data series. Differenced data analysis which called inter-annual analysis was carried out to find underlying relationship between malaria data series and meteorological data series. It has been revealed that meteorological variables, such as temperature, relative humidity and rainfall were the important environmental factors in the transmission of malaria. Spearman correlation analysis demonstrated relative humidity was greatest relative to malaria incidence and the correlation coefficient was 0.543(P<0.01). Strong positive correlations were found for malaria incidence time series lagging one to three months behind rainfall (r>0.4) and lagging zero to two months behind temperature and relative humidity (r>0.5) by the cross-correlation. Correlations were weaker with pre-whitening than without. The cross-correlograms between malaria incidence and various meteorological variables were entirely different. It was fluctuated randomly for temperature but with trend for the other two factors, which showed positive correlated to malaria when lag was from 0 to 5 months and negative from 6 to 12 months. Besides, the inter-annual analysis showed strong correlation between differenced annual malaria incidence and differenced meteorological variables (annual average maximum temperature, annual average relative humidity and annual average rainfall). The correlations coefficients were -0.668 (P<0.01), 0.451(P<0.05) and 0.432(P<0.05), respectively. Meteorological variables play important environmental roles in malaria transmission in Motou County. Relative humidity was the greatest influence factors, which affected the mosquito survival directly. The relationship between malaria incidence and rainfall was complex and it was not directly and linearly. The lags of temperature and relative humidity were similar and smaller than that of rainfall. Since the lags of meteorological variables affecting malaria transmission were short, it was difficult to do accurate long-term malaria incidence prediction using meteorological variables.
    Malaria Journal 03/2011; 10:54. · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria still represents a significant public health problem in China, and the cases dramatically increased in Central China after 2001. Antifolate resistance in Plasmodium vivax is caused by point mutations in genes encoding dihydrofolate reductase (pvdhfr) and dihydropteroate synthase (pvdhps). In this study, we used direct sequencing to investigate genetic variation in pvdhfr of malaria patients' samples from Central China. Among all the samples, 21.4% were wild-type, whereas mutations were detected at three codons (58, 61 and 117) including single mutant (34.6%) and double mutants (43.8%). The most prevalent mutant allele was the one with double mutation at codons 58 and 117 (24.6%). Three types of single mutation (S58R, T61M and S117N) were found in 2.1%, 11.8% and 20.9% of parasite isolates, respectively. The four P. vivax parasite populations in Central China also differed in pvdhfr allele frequencies. This study suggested that P. vivax in Central China may be relatively susceptible to pyrimethamine. And it also highlights genotyping in the pvdhfr genes remains a useful tool to monitor the emergence and spread of P. vivax pyrimethamine resistance.
    Parasites & Vectors 01/2011; 4:80. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. The annual numbers of falciparum malaria cases during 1992-2003 and the individual case reports of each clinical falciparum malaria during 2004-2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Falciparum malaria was endemic in two provinces of China during 2004-05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0-15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance of adult men cases. Imported falciparum malaria in the non-endemic area of China, affected mainly by the malaria transmission in Yunnan, has increased both spatially and temporally. Specific intervention measures targeted at the mobile population groups are warranted.
    Malaria Journal 02/2009; 8:130. · 3.40 Impact Factor
  • Source
    International Journal of Infectious Diseases - INT J INFECT DIS. 01/2009; 13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.
    Malaria Journal 02/2008; 7:110. · 3.40 Impact Factor