Shrikanta Chattopadhyay

Albert Einstein College of Medicine, New York City, New York, United States

Are you Shrikanta Chattopadhyay?

Claim your profile

Publications (12)102.81 Total impact

  • I David Goldman, Shrikanta Chattopadhyay, Rongbao Zhao, Richard Moran
    [show abstract] [hide abstract]
    ABSTRACT: More than 50 years after the introduction of the dihydrofolate reductase inhibitor, methotrexate, new antifolates have emerged and have been incorporated into the chemotherapeutic armamentarium. These include pralatrexate, with the same target as methotrexate, but with enhanced properties, and pemetrexed, with different enzyme targets and properties. Current synthetic efforts are focused on developing antifolates that are selectively delivered to cancer cells, but not to normal proliferating cells, exploiting the different properties of folate transporters. In another novel approach, drugs structurally and mechanistically unrelated to folates are linked to and use folic acid as a carrier to be endocytosed by folate receptors and then released to inhibit their cellular targets. This review describes the evolution and current status of antifolate pharmacology and prospects for the development of the next generation of folate analogs.
    Current opinion in investigational drugs (London, England: 2000) 12/2010; 11(12):1409-23. · 3.55 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed is a novel antifolate recently approved for the treatment of pleural mesothelioma and non-small cell lung cancer. In clinical regimens, pemetrexed is administered in conjunction with folic acid to minimize toxicity. However, excessive folate supplementation may also diminish the activity of this agent. The current study demonstrates, in several human solid tumor cell lines, that when extracellular 5-formyltetrahydrofolate levels are increased in vitro, within the range of normal human blood levels, there is a substantial decrease in pemetrexed activity upon continuous exposure to the drug. This was accompanied by a comparable lower level of trimetrexate activity consistent with an expansion of tumor cell folate pools. Likewise, when cells were exposed to pemetrexed with a schedule that simulates in vivo pharmacokinetics, there was markedly less cell killing with higher extracellular folate levels. Data are provided to indicate that 5-formyltetrahydrofolate is an acceptable surrogate for 5-methyltetrahydrofolate, the major blood folate, for this type of in vitro study. These observations and other reports suggest that, in view of the rise in serum folate and fall in serum homocysteine that has accompanied folic acid supplementation of food in the U.S., the addition of folic acid to regimens with pemetrexed should be limited to the lowest recommended level that provides optimal protection from pemetrexed toxicity.
    The Oncologist 08/2007; 12(7):808-15. · 4.10 Impact Factor
  • Shrikanta Chattopadhyay, Richard G Moran, I David Goldman
    [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed is a new-generation antifolate, approved for the treatment of mesothelioma and non-small cell lung cancer, currently being evaluated for the treatment of a variety of other solid tumors. This review traces the history of antifolates that led to the development of pemetrexed and describes the unique properties of this agent that distinguish it from other antifolates. These include (a) its very rapid conversion to active polyglutamate derivatives in cells that build to high levels and are retained for long intervals to achieve prolonged and potent inhibition of its major target enzyme thymidylate synthase, (b) its high affinity for three folate transporters, and (c) its marked sensitivity to the level of physiologic folates in cells. The latter results in the unique and paradoxical finding that when transport mediated by the major folate transporter (the reduced folate carrier) is impaired, pemetrexed activity is preserved. This is due to concurrent contraction of competing cellular physiologic folates and utilization of a novel second transport carrier for which pemetrexed has high affinity, recently identified as the proton-coupled folate transporter (PCFT). Laboratory studies are reviewed that raise the possibility of new approaches to the use of folic acid supplementation in clinical regimens with pemetrexed.
    Molecular Cancer Therapeutics 03/2007; 6(2):404-17. · 5.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Folates are essential nutrients that are required for one-carbon biosynthetic and epigenetic processes. While folates are absorbed in the acidic milieu of the upper small intestine, the underlying absorption mechanism has not been defined. We now report the identification of a human proton-coupled, high-affinity folate transporter that recapitulates properties of folate transport and absorption in intestine and in various cell types at low pH. We demonstrate that a loss-of-function mutation in this gene is the molecular basis for hereditary folate malabsorption in a family with this disease. This transporter was previously reported to be a lower-affinity, pH-independent heme carrier protein, HCP1. However, the current study establishes that a major function of this gene product is proton-coupled folate transport required for folate homeostasis in man, and we have thus amended the name to PCFT/HCP1.
    Cell 01/2007; 127(5):917-28. · 31.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed is a new-generation antifolate inhibitor of thymidylate synthase (TS) and a weaker inhibitor of glycinamide ribonucleotide transformylase (GARFT) required for de novo purine synthesis. Methylthioadenosine phosphorylase (MTAP) salvages purines by releasing adenine from methylthioadenosine and is often deleted in mesothelioma. The current study addresses the effect of MTAP on pemetrexed activity using a highly potent transition state inhibitor of MTAP, MT-DADMe-Immucillin A (ImmA; K(i) = 86 pmol/L) in the MTAP(+) NCI-H28 and MTAP(-) NCI-H2052 mesothelioma cell lines. Based on selective nucleoside protection, TS was found to be the primary pemetrexed target in both cell lines with GARFT inhibition requiring 20- to 30-fold higher pemetrexed concentrations. ImmA had no effect on pemetrexed activity but, when thymidine was added, the pemetrexed IC(50) decreased by a factor of approximately 3 in MTAP(+) H28 cells with no effect in MTAP(-) H2052 cells. Conversely, the transfection of MTAP into H2052 cells increased the pemetrexed IC(50) by nearly 3-fold but only in the presence of thymidine; this was reversed by ImmA. An MTAP-specific short interfering RNA produced a 2-fold decrease in pemetrexed IC(50) in MTAP(+) HeLa cells in the presence of thymidine. These data indicate that suppression of constitutive MTAP has no effect on pemetrexed activity when the primary target is TS. There is a modest salutary effect when the pemetrexed target is GARFT alone.
    Molecular Cancer Therapeutics 11/2006; 5(10):2549-55. · 5.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed, a new generation antifolate recently approved for the treatment of mesothelioma and non-small cell lung cancer, is an excellent substrate for the reduced folate carrier (RFC). To explore the carrier's effect on pemetrexed activity, RFC was inactivated in HCT-15 colon cancer cells by mutagenesis and PT632 selective pressure. A clone (PT1) was obtained with a glycine to arginine substitution at amino acid 401, resulting in the loss of RFC function. PT1 cells were resistant to PT632 (178-fold), methotrexate (4-fold), and ZD1694 (Tomudex, raltitrexed; 20-fold), but were 3-fold collaterally sensitive to pemetrexed when grown in 25 nmol/L of 5-formyltetrahydrofolate. PT1 cells transfected with wild-type RFC had antifolate sensitivities comparable to that of wild-type HCT-15 cells, indicating that the RFC mutation was the sole basis for resistance. Folate pools were contracted in PT1 cells by 32% or 60%, as measured by radiolabeling intracellular folates or by an enzyme binding assay, respectively. This was reflected in marked (6.5-fold) collateral sensitivity to trimetrexate. The initial uptake of pemetrexed in PT1 cells was markedly reduced ( approximately 85%) but intracellular pemetrexed levels increased to approximately 60% and approximately 70% to that of wild-type cells after 2 hours and 6 days, respectively. There was increased pemetrexed inhibition of glycinamide ribonucleotide transformylase and, to a lesser extent, thymidylate synthase in PT1 cells growing in 5-formyltetrahydrofolate based on nucleoside protection analyses. Hence, loss of RFC function leads to collateral sensitivity to pemetrexed in HCT-15 cells, likely due to cellular folate pool contraction resulting in partial preservation of pemetrexed polyglutamylation and increased target enzyme inhibition. micro
    Molecular Cancer Therapeutics 03/2006; 5(2):438-49. · 5.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The p16(INK4A)/CDKN2A gene on chromosome 9p21 is a site of frequent allelic loss in human cancers, and in a subset of cases, homozygous deletions at this locus encompass the telomeric methylthioadenosine phosphorylase (MTAP) gene. The MTAP gene product is the principal enzyme involved in purine synthesis via the salvage pathway, such that MTAP-negative cancers are solely dependent on de novo purine synthesis mechanisms. Inhibitors of the de novo pathway can then be used to selectively blockade purine synthesis in cancer cells while causing minimal collateral damage to normal cells. In this study, we determine that 10 of 28 (35%) biliary tract cancers show complete lack of Mtap protein expression. In vitro analysis using a selective inhibitor of the de novo purine synthesis pathway, L-alanosine, shows robust growth inhibition in MTAP-negative biliary cancer cell lines CAK-1 and GBD-1 accompanied by striking depletion of intracellular ATP and failure to rescue this depletion via addition of exogenous methylthioadenosine, the principal substrate of the MTAP gene product; in contrast, no significant effects were observed in MTAP-expressing HuCCT1 and SNU308 cell lines. Colony formation studies confirmed that L-alanosine reduced both number and size of CAK-1 colonies in soft agar assays. Knockdown of Mtap protein by RNA interference in L-alanosine-resistant HuCCT1 cells conferred sensitivity to this agent, confirming that intracellular Mtap protein levels determine response to L-alanosine. Inhibitors of de novo purine synthesis can be a potential mechanism-based strategy for treatment of biliary tract cancers, one third of which show complete loss of MTAP function.
    Molecular Cancer Therapeutics 01/2006; 4(12):1860-6. · 5.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed is a novel antifolate with polyglutamate derivatives that are potent inhibitors of thymidylate synthase (TS) and to a lesser extent glycinamide ribonucleotide formyltransferase (GARFT). Conditions that might modulate relative suppression of these sites were assessed by the pattern of hypoxanthine and thymidine protection. When grown with 25 nmol/L racemic 5-formyltetrahydrofolate, thymidine alone fully protected wild-type HeLa cells to at least 1 micromol/L pemetrexed, but protection of a reduced folate carrier (RFC)-null subline required both thymidine and hypoxanthine above a concentration of 30 nmol/L pemetrexed. As medium 5-formyltetrahydrofolate was decreased, protection by thymidine alone decreased, and was further diminished when HeLa cells were grown in dialyzed serum. There was little protection by thymidine of RFC-null HeLa cells under the latter conditions. Thymidine alone was not protective, and hypoxanthine alone produced only a small (2-fold) increase in IC(50), in a HeLa-derived line 8-fold resistant to pemetrexed due to a modest increase in TS. Finally, in MCF-7 breast cancer cells there was greater protection with thymidine alone than in HeLa cells when cells were grown in medium containing a low concentration of 5-formyltetrahydrofolate. These observations indicate that as intracellular folates decrease in HeLa cells, due to decreased extracellular reduced folate, or loss of RFC function, pemetrexed inhibition of GARFT increases. These data support the concept that the contribution to pemetrexed activity by inhibition of GARFT, particularly at low folate levels, is a contributing factor to drug activity but relative inhibition of TS and GARFT may vary among human tumors and cell lines.
    Clinical Cancer Research 03/2005; 11(3):1294-301. · 7.84 Impact Factor
  • Rongbao Zhao, Shrikanta Chattopadhyay, Marie Hanscom, I David Goldman
    [show abstract] [hide abstract]
    ABSTRACT: Prior studies from this laboratory documented the prevalence of methotrexate (MTX) transport activity with a low pH optimum in human solid tumor cell lines. In HeLa cells, this low pH activity has high affinity for pemetrexed [PMX (Alimta)] and is reduced folate carrier (RFC)-independent because it is not diminished in a RFC-null subline (R5). R5 cells also have residual transport activity, with high specificity for PMX, at neutral pH. In the current study, a R5 subline, R1, was selected under MTX selective pressure at a modest reduction in pH. There was markedly decreased MTX and PMX transport at both pH 5.5 and pH 7.4. When MTX was removed, there was a slow return of transport activity, and when MTX was added back, there was loss of transport at both pH values within 8 weeks. In R1 cells, there was a marked decrease in accumulation of PMX, MTX, and folic acid along with a decrease in growth inhibition by these and other antifolates that require a facilitative process to gain entry into cells. These data demonstrate that (i) RFC-independent transport in HeLa cells at low and neutral pH contributes to antifolate activity (in particular, to PMX activity) and can be diminished by antifolate selective pressure and (ii) the loss of these activities results in marked resistance to PMX, an agent for which there is little or no loss of activity when transport mediated by RFC is abolished. These observations suggest that transport activity in RFC-null HeLa R5 cells at neutral and low pH may reflect the same carrier-mediated process.
    Clinical Cancer Research 01/2005; 10(24):8735-42. · 7.84 Impact Factor
  • Shrikanta Chattopadhyay, Yanhua Wang, Rongbao Zhao, I David Goldman
    [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed [PMX (Alimta)] is a new generation antifolate with activity in a variety of solid tumors. It is an excellent substrate for most folate transporters, notably the reduced folate carrier (RFC) and folate receptor (FR)-alpha. The role of FR-alpha in PMX pharmacological activity is uncertain. Whereas high-level expression may enhance the activity of this agent, it is not clear what role constitutive levels of this transporter contribute to PMX activity. In this study, constitutive levels of FR-alpha expression were abolished by small interfering RNA-induced silencing in HeLa cells and RFC-null HeLa R5 cells as confirmed by Northern blotting, immunohistochemistry, and cell surface binding. PMX growth inhibition was unchanged in HeLa and R5 cells in the absence of FR-alpha expression. Loss of FR-alpha expression did not decrease net accumulation of PMX in either wild-type or RFC-null HeLa cells. Likewise, folate pools in wild-type HeLa cells were not decreased by FR-alpha gene silencing and were negligibly affected in the RFC-null R5 subline grown with 5-formyltetrahydrofolate. FR-alpha surface binding in HeLa cells was shown to be greater than that in a variety of other human solid tumor cell lines. Hence, constitutively expressed FR-alpha in HeLa cells does not contribute to PMX activity in the presence or absence of RFC function. This is likely the case in many human solid tumor cell lines.
    Clinical Cancer Research 01/2005; 10(23):7986-93. · 7.84 Impact Factor
  • Source
    Rongbao Zhao, Marie Hanscom, Shrikanta Chattopadhyay, I David Goldman
    [show abstract] [hide abstract]
    ABSTRACT: A methotrexate (MTX)-resistant HeLa subline (R5), developed in this laboratory, with impaired transport due to a genomic deletion of the reduced folate carrier (RFC) was only 2-fold resistant to pemetrexed (PMX), but 200- and 400-fold resistant to raltitrexed (ZD1694) and N(alpha)-(-4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-1-ornithine (PT523), respectively, compared with parental HeLa cells when grown with 2 microM folic acid. When folic acid was replaced with the more physiological 25 nM 5-formyltetrahydrofolate, R5 cells were 2-fold collaterally sensitive to PMX but still 40- and 200-fold resistant to ZD1694 and PT523, respectively. Sensitivity to PT523 and PMX could be completely restored, and sensitivity to ZD1694 nearly restored, by transfection of RFC cDNA into R5 cells, indicating that the defect in drug transport was the only, or major, factor in resistance. The preserved PMX activity in R5 cells could not be related to the very low expression of folate receptors. Rather, retained PMX activity in R5 cells was associated with residual transport by another process that exhibits good affinity for PMX (Kt = 12 microM) with much lower affinities for ZD1694, MTX, and PT523 (Kis of approximately 90, 100, and 250 microM, respectively). PMX transported by this route was rapidly converted to higher polyglutamates and, when grown with 25 nM 5-formyl-tetrahydrofolate, the rate of formation of these derivatives and their net accumulation in R5 cells was comparable to that of wild-type cells. These data suggest that selective preservation of PMX pharmacological activity in RFC-null R5 cells is due, in part, to partial preservation of transport by secondary process with a higher affinity for PMX than the other antifolates evaluated.
    Cancer Research 06/2004; 64(9):3313-9. · 8.65 Impact Factor
  • Yanhua Wang, Rongbao Zhao, Shrikanta Chattopadhyay, I David Goldman
    [show abstract] [hide abstract]
    ABSTRACT: Pemetrexed is a novel antifolate effective in the treatment of mesothelioma. Studies were undertaken to characterize the transport of this antifolate in this tumor. We report the presence of a novel, concentrative high-affinity transport activity in three human mesothelioma cell lines, characterized in detail in the NCI-H28 line, with a pemetrexed influx K(t) of 30 nM and V(max) of 10 nmol/g protein/min. This route is highly specific for pemetrexed, with a substrate specificity pattern quite different from that of the reduced folate carrier and folate receptors. In particular, there is an apparent relatively low affinity for other antifolate inhibitors of dihydrofolate-reductase (MTX, aminopterin, PT523) and thymidylate synthase (ZD1694, ZD9331). Besides its impact on the transport of pemetrexed, this high-affinity route may represent another pathway by which physiological folates are transported into human cells.
    Cancer Research 12/2002; 62(22):6434-7. · 8.65 Impact Factor