Shohei Oshima

Hokkaido University, Sapporo, Hokkaidō, Japan

Are you Shohei Oshima?

Claim your profile

Publications (5)12.38 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Production of nitric oxide (NO) in the hypothalamic paraventricular nucleus (PVN) was examined by microdialysis in rats subjected to immobilization (IMO) stress. A dialysis probe was implanted in the posterior magnocellular subdivision of the PVN and nitrite (NO(2)(-)), an oxidized product of NO, was measured continuously. NO(2)(-) concentration in dialysate was enhanced to 156% after 30 min of IMO compared with the NO(2)(-) level before IMO. Intraperitoneal administration of N(G)-monomethyl-l-arginine (10 mg/kg), a NO synthase inhibitor, before IMO completely inhibited the increase of NO production that IMO was to induce. Depletion of catecholamines innervating the PVN by an injection of 6-hydroxydopamine into the lateral ventricle before the microdialysis had no suppressive effect on the increase of NO production by IMO. In contrast, NO(2)(-) levels in the PVN were lowered by continuous perfusion of the solution containing the ionotropic glutamate receptor antagonists 2-amino-5-phosphonovaleric acid (500 microm) and 6-cyano-7-nitroquinoxaline-2, 3 dione (50 microm) through the dialysis probe, and the IMO-induced increase of NO production was attenuated by the treatment. These results suggest that catecholaminergic drive to the hypothalamus is not necessary for the IMO-induced increase of NO production and that ionotropic glutamate receptors play a role in the basal and IMO-induced NO production.
    Endocrinology 09/2004; 145(8):3603-7. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high-affinity choline transporter CHT1 works for choline uptake in the presynaptic terminals of cholinergic neurons. We examined its expression in the hypoglossal nucleus after unilateral hypoglossal nerve transection in mice by fluorescent in situ hybridization. One week after axotomy, CHT1 mRNA expression was lost in all hypoglossal motoneurons in the lesioned side. Two weeks after axotomy, CHT1 mRNA started to be re-expressed in a few motoneurons that recovered connections to tongue muscles as revealed by retrograde labeling with Fast Blue. After 4 weeks, most of axotomized hypoglossal motoneurons were reconnected and re-expressed CHT1 mRNA as strongly as control neurons, and the regenerating cholinergic axons established mature neuromuscular junctions. These results suggest that the establishment of motor innervation is critical for CHT1 mRNA expression in hypoglossal neurons after axotomy.
    Neuroscience Letters 08/2004; 365(2):97-101. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the expression profile of catechol O-methyltransferase (COMT) mRNA and its protein in the neonatal rat hypothalamus by in situ hybridization and immunohistochemistry to clarify the sites of dopamine degradation. Strong COMT mRNA expression was observed in the suprachiasmatic nucleus (SCN) throughout its rostrocaudal extent at postnatal day 1 (P1) and P2, and the mRNA levels decreased gradually until P16. COMT mRNA was predominantly localized to the ventral and medial parts of the SCN. Intense COMT immunoreactivity was demonstrated in the ventral SCN and was detected in neuronal perikarya and processes at P1. Ependymal and microglial cells also exhibited strong COMT immunoreactivity. These results indicate that COMT may directly be involved in dopaminergic signaling in the neonatal SCN.
    Neuroreport 07/2004; 15(8):1239-43. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oro-facial sensorimotor function conducted by the brainstem is vital to newborn mammals, and N-methyl-D-aspartate (NMDA) receptors play an important role in the regulation. Here we examined the expression of NMDA receptor subunits in the mouse hypoglossal nucleus from embryonic day 13 (E13) through postnatal day 21 (P21). Compared with other brainstem regions, early onset of GluRepsilon1 (NR2A) mRNA expression was conspicuous to the embryonic hypoglossal nucleus. The expression peaked at P1-P7, when other brainstem regions just started to express it. At P1, GluRepsilon1 subunit was localized to asymmetrical synapses on motoneuron dendrites, particularly, on the postsynaptic junction membrane. In developing motoneurons, expressions of GluRepsilon2 (NR2B), GluRepsilon4 (NR2D), and GluRzeta1 (NR1) mRNAs were accompanied. Until P21, however, all of these subunits were down-regulated with particular reduction for GluRepsilon2 and GluRepsilon4 mRNAs. Similar patterns of temporal expressions were observed in motoneurons of other brainstem motor nuclei. Taking that high levels of GluRepsilon1, GluRepsilon2, and GluRzeta1 subunits are also found in the adult hippocampus and cerebral cortex, it can be assumed that NMDA receptors in developing motoneurons are highly potent and potentially involved in structural and functional development of the brainstem motor system.
    Neuroscience Research 08/2002; 43(3):239-50. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular concentration of nitrite (NO2-), an oxidized product of nitric oxide (NO), was measured consecutively in the dorsal region of the rat suprachiasmatic nucleus (SCN) by means of in vivo microdialysis. The NO2- concentrations in the dialysates showed robust circadian rhythm under a 12:12 h light/dark cycle and were higher during the dark phase than during the light phase. When the rats were transferred to constant darkness, the 24 h rhythm of NO2- persisted without damping the amplitude. The NO2- level was significantly lowered by an injection of NO synthase inhibitor (NG-monomethyl-L-arginine, 10 mg/kg i.p.). These findings indicate that the daily fluctuation of NO2- in the dorsal region of the SCN, which represents endogenous rhythm of NO, is regulated independently of photic inputs into the SCN and may be related to the circadian clock functions.
    Neuroscience Letters 06/2001; 303(3):161-4. · 2.03 Impact Factor