Are you Rodrigo N Ferreira?

Claim your profile

Publications (2)4.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A thrombin-like enzyme from Bothrops leucurus venom, named leucurobin (leuc), was purified by gel filtration, affinity and ion exchange chromatographies. Physicochemical studies indicated that the purified enzyme is a 35 kDa monomeric glycoprotein on SDS-PAGE under reducing conditions, which decreased to 29 kDa after deglycosylation with N-glycosidase F (PNGase F). The amino acid sequence of leuc was determined by automated sequencing of the intact native protein and peptides produced by digestion of the S-pyridyl-ethylated protein with trypsin. The protein sequence exhibits significant similarities with other serine proteases reported from snake venoms, and contains two potential sites of N-linked glycosylation. The proteinase split off fibrinopeptide A (FPA) rapidly from human fibrinogen; however, only negligible traces of fibrinopeptide B (FPB) were observed. In addition, the enzyme released the N-terminal peptide (Mr=4572) containing the first 42 residues from the Bbeta-chain. Leuc could neither activate factor XIII nor release kinins from heat-treated bovine plasma. Its specific clotting activity was equivalent to 198 NIH thrombin U/mg on human fibrinogen. Kinetic properties of leuc were determined using representative chromogenic substrates. The enzyme evoked the gyroxin syndrome when injected into the tail veins of mice at levels of 0.143 microg/g mouse. The inhibitory effects of PMSF and benzamidine on the amidolytic activity suggest that leuc is a serine proteinase, and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Antibothropic serum, SBTI and EDTA had little or no effect on its amidolytic activity. However, the clotting effect of the enzyme was strongly inhibited by antibothropic serum. A Dixon plot showed that the hydrolysis of Bz-L-Arg-pNA by leuc was competitively inhibited by benzamidine (Ki=1.61+/-0.25 mM).
    Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology 05/2007; 146(4):565-75. · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two isoforms of a thrombin-like enzyme designated TLE-B and TLE-P were purified from the venoms of Lachesis muta muta (bushmaster) snakes captured in two different geographical localities, Manaus (Brazil) and Pucallpa (Perú). TLE-B and TLE-P showed Mr values of 44000 and 43000 under reducing conditions on SDS-PAGE, which decreased to 27000 after deglycosylation with N-glycosidase F (PNGase F). The purified proteinases split off fibrinopeptide A rapidly from human fibrinogen and fibrinopeptide B more slowly. In addition, both enzymes released the N-terminal peptide (Mr=4572) containing the first 42 residues from the Bbeta-chain. Their specific clotting activities were equivalent to 1000 and 900 NIH thrombin units/mg on human fibrinogen and 526 and 606 NIH thrombin units/mg on bovine fibrinogen for TLE-B and TLE-P, respectively. Kinetic properties of these enzymes were determined using representative chromogenic substrates. Tryptic peptide mapping of the two native enzymes suggested a large degree of structural similarity. Purified rabbit IgG against TLE-B reacted with both enzymes forming a continuous precipitin line on immunodiffusion. Furthermore, Western blot and indirect ELISA were used to compare the antigenic cross-reactivity for both enzymes as well as the venoms of L. muta muta and Bothrops snakes. Incubation of human alpha2-macroglobulin (alpha2-M) with each enzyme at molar ratios of 1:1, 1:2 and 1:4 enzyme:inhibitor resulted in retarding their clotting activities by approximately 12 times, whereas their amidolytic activities were not affected. However, the Mr 180000 subunits of alpha2-M were not cleaved by these enzymes, suggesting that alpha2-M inhibits TLEs by steric hindrance. Similarly, inhibitions of their clotting activities were obtained using high concentrations of rabbit IgG (40 microg, corresponding to molar ratio enzyme:inhibitor of 1:2) against TLE-B.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 11/2003; 136(2):255-66. · 2.07 Impact Factor