Robert B Boxer

University of Pennsylvania, Philadelphia, PA, United States

Are you Robert B Boxer?

Claim your profile

Publications (10)117.01 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extrapituitary prolactin (Prl) is produced in humans and rodents; however, little is known about its in vivo regulation or physiological function. We now report that autocrine prolactin is required for terminal mammary epithelial differentiation during pregnancy and that its production is regulated by the Pten-PI3K-Akt pathway. Conditional activation of the PI3K-Akt pathway in the mammary glands of virgin mice by either Akt1 expression or Pten deletion rapidly induced terminal mammary epithelial differentiation accompanied by the synthesis of milk despite the absence of lobuloalveolar development. Surprisingly, we found that mammary differentiation was due to the PI3K-Akt-dependent synthesis and secretion of autocrine prolactin and downstream activation of the prolactin receptor (Prlr)-Jak-Stat5 pathway. Consistent with this, Akt-induced mammary differentiation was abrogated in Prl(-/-), Prlr(-/-), and Stat5(-/-) mice. Furthermore, cells treated with conditioned medium from mammary glands in which Akt had been activated underwent rapid Stat5 phosphorylation in a manner that was blocked by inhibition of Jak2, treatment with an anti-Prl antibody, or deletion of the prolactin gene. Demonstrating a physiological requirement for autocrine prolactin, mammary glands from lactation-defective Akt1(-/-);Akt2(+/-) mice failed to express autocrine prolactin or activate Stat5 during late pregnancy despite normal levels of circulating serum prolactin and pituitary prolactin production. Our findings reveal that PI3K-Akt pathway activation is necessary and sufficient to induce autocrine prolactin production in the mammary gland, Stat5 activation, and terminal mammary epithelial differentiation, even in the absence of the normal developmental program that prepares the mammary gland for lactation. Together, these findings identify a function for autocrine prolactin during normal development and demonstrate its endogenous regulation by the PI3K-Akt pathway.
    Genes & development 10/2012; 26(19):2154-68. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Akt pathway plays a central role in regulating cell survival, proliferation and metabolism, and is one of the most commonly activated pathways in human cancer. A role for Akt in epithelial differentiation, however, has not been established. We previously reported that mice lacking Akt1, but not Akt2, exhibit a pronounced metabolic defect during late pregnancy and lactation that results from a failure to upregulate Glut1 as well as several lipid synthetic enzymes. Despite this metabolic defect, however, both Akt1-deficient and Akt2-deficient mice exhibit normal mammary epithelial differentiation and Stat5 activation. In light of the overlapping functions of Akt family members, we considered the possibility that Akt may play an essential role in regulating mammary epithelial development that is not evident in Akt1-deficient mice due to compensation by other Akt isoforms. To address this possibility, we interbred mice bearing targeted deletions in Akt1 and Akt2 and determined the effect on mammary differentiation during pregnancy and lactation. Deletion of one allele of Akt2 in Akt1-deficient mice resulted in a severe defect in Stat5 activation during late pregnancy that was accompanied by a global failure of terminal mammary epithelial cell differentiation, as manifested by the near-complete loss in production of the three principal components of milk: lactose, lipid, and milk proteins. This defect was due, in part, to a failure of pregnant Akt1(-/-);Akt2(+/-) mice to upregulate the positive regulator of Prlr-Jak-Stat5 signaling, Id2, or to downregulate the negative regulators of Prlr-Jak-Stat5 signaling, caveolin-1 and Socs2. Our findings demonstrate an unexpected requirement for Akt in Prlr-Jak-Stat5 signaling and establish Akt as an essential central regulator of mammary epithelial differentiation and lactation.
    Breast cancer research: BCR 09/2010; 12(5):R72. · 5.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation - similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 - stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation - similar to those found in tumours bearing endogenous Kras2 mutations - induce cellular senescence that is Ink4a-Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53-Ink4a-Arf-dependent senescence checkpoints.
    Nature Cell Biology 06/2007; 9(5):493-505. · 20.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabolic demands and synthetic capacity of the lactating mammary gland exceed that of any other tissue, thereby providing a useful paradigm for understanding the developmental regulation of cellular metabolism. By evaluating mice bearing targeted deletions in Akt1 or Akt2, we demonstrate that Akt1 is specifically required for lactating mice to synthesize sufficient quantities of milk to support their offspring. Whereas cellular proliferation, differentiation, and apoptosis are unaffected, loss of Akt1 disrupts the coordinate regulation of metabolic pathways that normally occurs at the onset of lactation. This results in a failure to upregulate glucose uptake, Glut1 surface localization, lipid synthesis, and multiple lipogenic enzymes, as well as a failure to downregulate lipid catabolic enzymes. These findings demonstrate that Akt1 is required in an isoform-specific manner for orchestrating many of the developmental changes in cellular metabolism that occur at the onset of lactation and establish a role for Akt1 in glucose metabolism.
    Cell Metabolism 01/2007; 4(6):475-90. · 14.62 Impact Factor
  • Source
    Joanne W Jang, Robert B Boxer, Lewis A Chodosh
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that c-MYC-induced mammary tumorigenesis in mice proceeds via a preferred secondary pathway involving spontaneous activating mutations in Kras2 (C. M. D'Cruz, E. J. Gunther, R. B. Boxer, J. L. Hartman, L. Sintasath, S. E. Moody, J. D. Cox, S. I. Ha, G. K. Belka, A. Golant, R. D. Cardiff, and L. A. Chodosh, Nat. Med. 7:235-239, 2001). In contrast, we now demonstrate that Wnt1-induced mammary tumorigenesis proceeds via a pathway that preferentially activates Hras1. In addition, we find that expression of oncogenic forms of Kras2 and Hras1 from their endogenous promoters has markedly different consequences for the progression of tumors to oncogene independence. Spontaneous activating Kras2 mutations occurring in either MYC- or Wnt1-induced tumors were strongly associated with oncogene-independent tumor growth following MYC or Wnt1 downregulation. In contrast, Hras1-mutant Wnt1-induced tumors consistently remained oncogene dependent. Additionally, Kras2-mutant tumors exhibited substantially higher levels of ras-GTP, phospho-Erk1/2, and phospho-Mek1/2 compared to Hras1-mutant tumors, suggesting the involvement of the ras/mitogen-activated protein kinase (MAPK) pathway in the acquisition of oncogene independence. Consistent with this, by use of carcinogen-induced ras mutations as well as knock-in mice harboring a latent activated Kras2 allele, we demonstrate that Kras2 activation strongly synergizes with both c-MYC and Wnt1 in mammary tumorigenesis and promotes the progression of tumors to oncogene independence. Together, our findings support a model for tumorigenesis in which c-MYC and Wnt1 select for the outgrowth of cells harboring mutations in specific ras isoforms and that these secondary mutations, in turn, determine the extent of ras/MAPK pathway activation and the potential for oncogene-independent growth.
    Molecular and Cellular Biology 12/2006; 26(21):8109-21. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies of oncogene dependence in conditional transgenic mice have suggested the exciting possibility that transient or prolonged MYC inactivation may be sufficient for sustained reversal of the tumorigenic process. In contrast, we report here that following oncogene downregulation, the majority of c-MYC-induced mammary adenocarcinomas grow in the absence of MYC overexpression. In addition, residual neoplastic cells persist from virtually all tumors that do regress to a nonpalpable state and these residual cells rapidly recover their malignant properties following MYC reactivation or spontaneously recur in a MYC-independent manner. Thus, MYC-induced mammary tumor cells subjected to either brief or prolonged MYC inactivation remain exquisitely sensitive to its oncogenic effects and characteristically progress to a state in which growth is MYC-independent.
    Cancer Cell 01/2005; 6(6):577-86. · 24.76 Impact Factor
  • Source
    Breast Cancer Research 01/2003; 5:1-1. · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normal developmental events such as puberty, pregnancy, and parity influence the susceptibility of the mammary gland to tumorigenesis in both humans and rodent model systems. Unfortunately, constitutive transgenic mouse models that rely on mammary-specific promoters to control transgene expression have limited utility for studying the effect of developmental events on breast cancer risk since the hormonal signals governing these events also markedly influence transgene expression levels. A novel transgenic mouse system is described that uses the MMTV-LTR to drive expression of the reverse tetracycline-dependent transactivator rtTA. Transgenic mice expressing rtTA in the mammary epithelium were crossed with reporter lines bearing tet operator-controlled transgenes. We tested the ability to spatially, temporally, and quantitatively control reporter gene expression after administration of doxycycline to bitransgenic mice. Transgene expression using this system can be rapidly induced and deinduced, is highly mammary specific, can be reproducibly titrated over a wide range of expression levels, and is essentially undetectable in the uninduced state. Homogeneous transgene expression throughout the mammary epithelium can be achieved. This system permits transgene expression to be restricted to any desired stage of postnatal mammary gland development. We have developed a mammary-specific, doxycycline-inducible transgenic mouse model for studying the effect of mammary gland development on transgene-mediated phenotypes. Unlike other mammary-specific, transgenic systems that have been described, this system combines spatially homogeneous transgene expression in the mammary epithelium during puberty, pregnancy, lactation, and involution with the use of an orally administered, inexpensive, and widely available inducing agent. This system offers new opportunities for the transgenic analysis of mammary gland biology in vivo.
    The FASEB Journal 04/2002; 16(3):283-92. · 5.70 Impact Factor
  • Source
    Robert B. Boxer, Lewis A. Chodosh
    [Show abstract] [Hide abstract]
    ABSTRACT: Amplification of the c-MYC oncogene has been found in five to twenty percent of breast tumors However, the molecular mechanisms by which c-MYC contributes to tumorigenesis is not well understood. To address this question, we have used the tetracycline regulatory system to conditionally express the c-MYC oncogene in the mammary epithelium of bitransgenic mice. To determine whether c-MYC induced mammary tumors remain dependent on c-MYC for maintainenance of the tumorigenic state, we deinduced c-MYC expression in animals harboring tumors. Withdrawal of c-MYC expression revealed that nearly half of the tumors remain dependent on c-MYC transgene expression for their continued growth. To study the molecular properties that distinguish c-MYC dependent and independent tumors, c-MYC initiated tumors were analyzed for mutations in the ras family of genes. Approximately half of the tumors examined were found to harbor spontaneous activating point mutations in either K-ras or N-ras, whereas no mutations were found in H-ras. Interestingly, the presence of an activating ras mutation was found to strongly correlate with the failure of tumors to regress following c-MYC deinduction. These data suggest that spontaneous activating mutations in K-ras and N-ras represent a preferred secondary pathway for c-MYC- induced tumorigenesis in the mammary gland.
    06/2001;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the process of mammary tumorigenesis requires multiple genetic events, it is unclear to what extent carcinogenesis proceeds through preferred secondary pathways following a specific initiating oncogenic event. Similarly, the extent to which established mammary tumors remain dependent on individual mutations for maintenance of the transformed state is unknown. Here we use the tetracycline regulatory system to conditionally express the human c-MYC oncogene in the mammary epithelium of transgenic mice. MYC encodes a transcription factor implicated in multiple human cancers. In particular, amplification and overexpression of c-MYC in human breast cancers is associated with poor prognosis, although the genetic mechanisms by which c-MYC promotes tumor progression are poorly understood. We show that deregulated c-MYC expression in this inducible system results in the formation of invasive mammary adenocarcinomas, many of which fully regress following c-MYC deinduction. Approximately half of these tumors harbor spontaneous activating point mutations in the ras family of proto-oncogenes with a strong preference for Kras2 compared with Hras1. Nearly all tumors lacking activating ras mutations fully regressed following c-MYC deinduction, whereas tumors bearing ras mutations did not, suggesting that secondary mutations in ras contribute to tumor progression. These findings demonstrate that c-MYC-induced mammary tumorigenesis proceeds through a preferred secondary oncogenic pathway involving Kras2.
    Nature Medicine 03/2001; 7(2):235-9. · 22.86 Impact Factor

Publication Stats

717 Citations
117.01 Total Impact Points

Institutions

  • 2012
    • University of Pennsylvania
      • Department of Cancer Biology - CBIO
      Philadelphia, PA, United States
  • 2002–2010
    • Hospital of the University of Pennsylvania
      • Department of Cancer Biology
      Philadelphia, Pennsylvania, United States