Raju V V Tatituri

Brigham and Women's Hospital , Boston, MA, United States

Are you Raju V V Tatituri?

Claim your profile

Publications (11)92.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Invariant natural killer T (iNKT) cells are a specialized T-cell subset that recognizes lipids as antigens, contributing to immune responses in diverse disease processes. Experimental data suggests that iNKT cells can recognize both microbial and endogenous lipid antigens. Several candidate endogenous lipid antigens have been proposed, although the contextual role of specific antigens during immune responses remains largely unknown. We have previously reported that mammalian glucosylceramides (GlcCers) activate iNKT cells. GlcCers are found in most mammalian tissues, and exist in variable molecular forms that differ mainly in N-acyl fatty acid chain use. In this report, we purified, characterized, and tested the GlcCer fractions from multiple animal species. Although activity was broadly identified in these GlcCer fractions from mammalian sources, we also found activity properties that could not be reconciled by differences in fatty acid chain use. Enzymatic digestion of β-GlcCer and a chromatographic separation method demonstrated that the activity in the GlcCer fraction was limited to a rare component of this fraction, and was not contained within the bulk of β-GlcCer molecular species. Our data suggest that a minor lipid species that copurifies with β-GlcCer in mammals functions as a lipid self antigen for iNKT cells.
    Proceedings of the National Academy of Sciences of the United States of America. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD1d-restricted natural killer T (NKT) cells include two major subgroups. The most widely studied are Vα14Jα18(+) invariant NKT (iNKT) cells that recognize the prototypical α-galactosylceramide antigen, whereas the other major group uses diverse T-cell receptor (TCR) α-and β-chains, does not recognize α-galactosylceramide, and is referred to as diverse NKT (dNKT) cells. dNKT cells play important roles during infection and autoimmunity, but the antigens they recognize remain poorly understood. Here, we identified phosphatidylglycerol (PG), diphosphatidylglycerol (DPG, or cardiolipin), and phosphatidylinositol from Mycobacterium tuberculosis or Corynebacterium glutamicum as microbial antigens that stimulated various dNKT, but not iNKT, hybridomas. dNKT hybridomas showed distinct reactivities for diverse antigens. Stimulation of dNKT hybridomas by microbial PG was independent of Toll-like receptor-mediated signaling by antigen-presenting cells and required lipid uptake and/or processing. Furthermore, microbial PG bound to CD1d molecules and plate-bound PG/CD1d complexes stimulated dNKT hybridomas, indicating direct recognition by the dNKT cell TCR. Interestingly, despite structural differences in acyl chain composition between microbial and mammalian PG and DPG, lipids from both sources stimulated dNKT hybridomas, suggesting that presentation of microbial lipids and enhanced availability of stimulatory self-lipids may both contribute to dNKT cell activation during infection.
    Proceedings of the National Academy of Sciences 01/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transferring lipid antigens from membranes into CD1 antigen-presenting proteins represents a major molecular hurdle necessary for T-cell recognition. Saposins facilitate this process, but the mechanisms used are not well understood. We found that saposin B forms soluble saposin protein-lipid complexes detected by native gel electrophoresis that can directly load CD1 proteins. Because saposin B must bind lipids directly to function, we found it could not accommodate long acyl chain containing lipids. In contrast, saposin C facilitates CD1 lipid loading in a different way. It uses a stable, membrane-associated topology and was capable of loading lipid antigens without forming soluble saposin-lipid antigen complexes. These findings reveal how saposins use different strategies to facilitate transfer of structurally diverse lipid antigens.
    Proceedings of the National Academy of Sciences 02/2012; 109(12):4357-64. · 9.81 Impact Factor
  • Raju Venkata Veera Tatituri, Michael B Brenner, John Turk, Fong-Fu Hsu
    [Show abstract] [Hide abstract]
    ABSTRACT: The cell wall of the pathogenic bacterium Streptococcus pneumoniae contains glucopyranosyl diacylglycerol (GlcDAG) and galactoglucopyranosyldiacylglycerol (GalGlcDAG). The specific GlcDAG consisting of vaccenic acid substituent at sn-2 was recently identified as another glycolipid antigen family recognized by invariant natural killer T-cells. Here, we describe a linear ion-trap multiple-stage (MS(n) ) mass spectrometric approach towards structural analysis of GalGlcDAG and GlcDAG. Structural information derived from MS(n) (n = 2, 3) on the [M + Li](+) adduct ions desorbed by electrospray ionization affords identification of the fatty acid substituents, assignment of the fatty acyl groups on the glycerol backbone, as well as the location of double bond along the fatty acyl chain. The identification of the fatty acyl groups and determination of their regio-specificity were confirmed by MS(n) (n = 2, 3) on the [M + NH(4) ](+) ions. We establish the structures of GalGlcDAG and GlcDAG isolated from S. pneumoniae, in which the major species consists of a 16:1- or 18:1-fatty acid substituent mainly at sn-2, and the double bond of the fatty acid is located at ω-7 (n-7). More than one isomers were found for each mass in the family. This mass spectrometric approach provides a simple method to achieve structure identification of this important lipid family that would be very difficult to define using the traditional method.
    Biological Mass Spectrometry 01/2012; 47(1):115-23. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant natural killer T cells (iNKT cells) have a prominent role during infection and other inflammatory processes, and these cells can be activated through their T cell antigen receptors by microbial lipid antigens. However, increasing evidence shows that they are also activated in situations in which foreign lipid antigens would not be present, which suggests a role for lipid self antigen. We found that an abundant endogenous lipid, β-D-glucopyranosylceramide (β-GlcCer), was a potent iNKT cell self antigen in mouse and human and that its activity depended on the composition of the N-acyl chain. Furthermore, β-GlcCer accumulated during infection and in response to Toll-like receptor agonists, contributing to iNKT cell activation. Thus, we propose that recognition of β-GlcCer by the invariant T cell antigen receptor translates innate danger signals into iNKT cell activation.
    Nature Immunology 12/2011; 12(12):1202-11. · 26.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: iNKT cells are innate T lymphocytes recognizing endogenous and foreign lipid antigens presented in the MHC-like molecule CD1d. The semi-invariant iNKT cell TCR can detect certain bacterial and parasitic lipids and drive iNKT cell responses. How iNKT cells respond to fungi, however, is unknown. We found that CD1d-deficient mice, which lack iNKT cells, poorly control infection with the fungal pathogen Aspergillus fumigatus. Furthermore, A. fumigatus rapidly activates iNKT cells in vivo and in vitro in the presence of APCs. Surprisingly, despite a requirement for CD1d recognition, the antifungal iNKT cell response does not require fungal lipids. Instead, Dectin-1- and MyD88-mediated responses to β-1,3 glucans, major fungal cell-wall polysaccharides, trigger IL-12 production by APCs that drives self-reactive iNKT cells to secrete IFN-γ. Innate recognition of β-1,3 glucans also drives iNKT cell responses against Candida, Histoplasma, and Alternaria, suggesting that this mechanism may broadly define the basis for antifungal iNKT cell responses.
    Cell host & microbe 11/2011; 10(5):437-50. · 13.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.
    Journal of Experimental Medicine 06/2011; 208(6):1163-77. · 13.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For major histocompatibility complex class I and II molecules, the binding of specific peptide antigens is essential for assembly and trafficking and is at the center of their quality control mechanism. However, the role of lipid antigen binding in stabilization and quality control of CD1 heavy chain (HC).beta(2)-microglobulin (beta(2)m) complexes is unclear. Furthermore, the distinct trafficking and loading routes of CD1 proteins take them from mildly acidic pH in early endososmal compartments (pH 6.0) to markedly acidic pH in lysosomes (pH 5.0) and back to neutral pH of the cell surface (pH 7.4). Here, we present evidence that the stability of each CD1 HC.beta(2)m complex is determined by the distinct pH optima identical to that of the intracellular compartments in which each CD1 isoform resides. Although stable at acidic endosomal pH, complexes are only stable at cell surface pH 7.4 when bound to specific lipid antigens. The proposed model outlines a quality control program that allows lipid exchange at low endosomal pH without dissociation of the CD1 HC.beta(2)m complex and then stabilizes the antigen-loaded complex at neutral pH at the cell surface.
    Journal of Biological Chemistry 04/2010; 285(16):11937-47. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corynebacterium glutamicum and Mycobacterium tuberculosis share a similar cell wall architecture, and the availability of their genome sequences has enabled the utilization of C. glutamicum as a model for the identification and study of, otherwise essential, mycobacterial genes involved in lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis. We selected the putative glycosyltransferase-Rv2174 from M. tuberculosis and deleted its orthologue NCgl2093 from C. glutamicum. This resulted in the formation of a novel truncated lipomannan (Cg-t-LM) and a complete ablation of LM/LAM biosynthesis. Purification and characterization of Cg-t-LM revealed an overall decrease in molecular mass, a reduction of alpha(1-->6) and alpha(1-->2) glycosidic linkages illustrating a reduced degree of branching compared with wild-type LM. The deletion mutant's biochemical phenotype was fully complemented by either NCgl2093 or Rv2174. Furthermore, the use of a synthetic neoglycolipid acceptor in an in vitro cell-free assay utilizing the sugar donor beta-D-mannopyranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor alpha-D-Manp-(1-->6)-alpha-D-Manp-O-C8 as a substrate, confirmed NCgl2093 and Rv2174 as an alpha(1-->6) mannopyranosyltransferase (MptA), involved in the latter stages of the biosynthesis of the alpha(1-->6) mannan core of LM. Altogether, these studies have identified a new mannosyltransferase, MptA, and they shed further light on the biosynthesis of LM/LAM in Corynebacterianeae.
    Molecular Microbiology 10/2007; 65(6):1503-17. · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arabinan polysaccharide side-chains are present in both Mycobacterium tuberculosis and Corynebacterium glutamicum in the heteropolysaccharide arabinogalactan (AG), and in M. tuberculosis in the lipoglycan lipoarabinomannan (LAM). This study shows by quantitative sugar and glycosyl linkage analysis that C. glutamicum possesses a much smaller LAM version, Cg-LAM, characterized by single t-Araf residues linked to the alpha(1-->6)-linked mannan backbone. MALDI-TOF MS showed an average molecular mass of 13,800-15 400 Da for Cg-LAM. The biosynthetic origin of Araf residues found in the extracytoplasmic arabinan domain of AG and LAM is well known to be provided by decaprenyl-monophosphoryl-D-arabinose (DPA). However, the characterization of LAM in a C. glutamicum : : ubiA mutant devoid of prenyltransferase activity and devoid of DPA-dependent arabinan deposition into AG revealed partial formation of LAM, albeit with a slightly altered molecular mass. These data suggest that in addition to DPA utilization as an Araf donor, alternative pathways exist in Corynebacterianeae for Araf delivery, possibly via an unknown sugar nucleotide.
    Microbiology 08/2007; 153(Pt 8):2621-9. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis PimB has been demonstrated to catalyze the addition of a mannose residue from GDP-mannose to a monoacylated phosphatidyl-myo-inositol mannoside (Ac(1)PIM(1)) to generate Ac(1)PIM(2). Herein, we describe the disruption of its probable orthologue Cg-pimB and the chemical analysis of glycolipids and lipoglycans isolated from wild type Corynebacterium glutamicum and the C. glutamicum::pimB mutant. Following a careful analysis, two related glycolipids, Gl-A and Gl-X, were found in the parent strain, but Gl-X was absent from the mutant. The biosynthesis of Gl-X was restored in the mutant by complementation with either Cg-pimB or Mt-pimB. Subsequent chemical analyses established Gl-X as 1,2-di-O-C(16)/C(18:1)-(alpha-d-mannopyranosyl)-(1-->4)-(alpha-d-glucopyranosyluronic acid)-(1-->3)-glycerol (ManGlcAGroAc(2)) and Gl-A as the precursor, GlcAGroAc(2). In addition, C. glutamicum::pimB was still able to produce Ac(1)PIM(2), suggesting that Cg-PimB catalyzes the synthesis of ManGlcAGroAc(2) from GlcAGroAc(2). Isolation of lipoglycans from C. glutamicum led to the identification of two related lipoglycans. The larger lipoglycan possessed a lipoarabinomannan-like structure, whereas the smaller lipoglycan was similar to lipomannan (LM). The absence of ManGlcA-GroAc(2) in C. glutamicum::pimB led to a severe reduction in LM. These results suggested that ManGlcAGroAc(2) was further extended to an LM-like molecule. Complementation of C. glutamicum::pimB with Cg-pimB and Mt-pimB led to the restoration of LM biosynthesis. As a result, Cg-PimB, which we have assigned as MgtA, is now clearly defined as a GDP-mannose-dependent alpha-mannosyltransferase from our in vitro analyses and is involved in the biosynthesis of ManGlcAGroAc(2).
    Journal of Biological Chemistry 02/2007; 282(7):4561-72. · 4.65 Impact Factor