P. Kerry

University of Zielona Góra, Zielona Góra, Lubusz, Poland

Are you P. Kerry?

Claim your profile

Publications (9)33.13 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present high time resolution SDSS-$g'$ and SDSS-$z'$ light curves of the primary eclipse in SDSS J141126.20+200911.1, together with time-resolved X-Shooter spectroscopy and near-infrared $JHK_{s}$ photometry. Our observations confirm the substellar nature of the companion, making SDSS J141126.20+200911.1 the first eclipsing white dwarf/brown dwarf binary known. We measure a (white dwarf model dependent) mass and radius for the brown dwarf companion of $M_{2} = 0.050 \pm 0.002$ $M_{\odot}$ and $R_{2} = 0.072 \pm 0.004$ $M_{\odot}$, respectively. The lack of a robust detection of the companion light in the $z'$-band eclipse constrains the spectral type of the companion to be later than L5. Comparing the NIR photometry to the expected white dwarf flux reveals a clear $K_s$-band excess, suggesting a spectral type in the range L7-T1. The radius measurement is consistent with the predictions of evolutionary models, and suggests a system age in excess of three Gyr. The low companion mass is inconsistent with the inferred spectral type of L7-T1, instead predicting a spectral type nearer T5. This indicates that irradiation of the companion in SDSS J1411 could be causing a significant temperature increase, at least on one hemisphere.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ULTRASPEC is a high-speed imaging photometer mounted permanently at one of the Nasmyth focii of the 2.4-m Thai National Telescope (TNT) on Doi Inthanon, Thailand's highest mountain. ULTRASPEC employs a 1024x1024 pixel frame-transfer, electron-multiplying CCD (EMCCD) in conjunction with re-imaging optics to image a field of 7.7'x7.7' at (windowed) frame rates of up to ~200 Hz. The EMCCD has two outputs - a normal output that provides a readout noise of 2.3 e- and an avalanche output that can provide essentially zero readout noise. A six-position filter wheel enables narrow-band and broad-band imaging over the wavelength range 330-1000 nm. The instrument saw first light on the TNT in November 2013 and will be used to study rapid variability in the Universe. In this paper we describe the scientific motivation behind ULTRASPEC, present an outline of its design and report on its measured performance on the TNT.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use a combination of X-shooter spectroscopy, ULTRACAM high-speed photometry and SOFI near-infrared photometry to measure the masses and radii of both components of the eclipsing post common envelope binaries SDSS J1212-0123 and GK Vir. For both systems we measure the gravitational redshift of the white dwarf and combine it with light curve model fits to determine the inclinations, masses and radii. For SDSS J1212-0123 we find a white dwarf mass and radius of 0.439 +/- 0.002 Msun and 0.0168 +/- 0.0003 Rsun, and a secondary star mass and radius of 0.273 +/- 0.002 Msun and 0.306 +/- 0.007 Rsun. For GK Vir we find a white dwarf mass and radius of 0.564 +/- 0.014 Msun and 0.0170 +/- 0.0004 Rsun, and a secondary star mass and radius of 0.116 +/- 0.003 Msun and 0.155 +/- 0.003 Rsun. The mass and radius of the white dwarf in GK Vir are consistent with evolutionary models for a 50,000K carbon-oxygen core white dwarf. Although the mass and radius of the white dwarf in SDSS J1212-0123 are consistent with carbon-oxygen core models, evolutionary models imply that a white dwarf with such a low mass and in a short period binary must have a helium core. The mass and radius measurements are consistent with helium core models but only if the white dwarf has a very thin hydrogen envelope, which has not been predicted by evolutionary models. The mass and radius of the secondary star in GK Vir are consistent with evolutionary models after correcting for the effects of irradiation by the white dwarf. The secondary star in SDSS J1212-0123 has a radius ~9 per cent larger than predicted.
    Monthly Notices of the Royal Astronomical Society 11/2011; 420(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-speed optical photometry of the soft gamma repeater SGR 0501+4516, obtained with ULTRACAM on two consecutive nights approximately 4 months after the source was discovered via its gamma-ray bursts. We detect SGR 0501+4516 at a magnitude of i' = 24.4+/-0.1. We present the first measurement of optical pulsations from an SGR, deriving a period of 5.7622+/-0.0003 s, in excellent agreement with the X-ray spin period of the neutron star. We compare the morphologies of the optical pulse profile with the X-ray and infrared pulse profiles; we find that the optical, infrared and harder X-rays share similar double-peaked morphologies, but the softer X-rays exhibit only a single-peaked morphology, indicative of a different origin. The optical pulsations appear to be in phase with the X-ray pulsations and exhibit a root-mean-square pulsed fraction of 52+/-7%, approximately a factor of two greater than in the X-rays. Our results find a natural explanation within the context of the magnetar model for SGRs.
    Monthly Notices of the Royal Astronomical Society 06/2011; 416. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rotating radio transient (RRAT) J1819−1458 exhibits ∼3 ms bursts in the radio every ∼3 min, implying that it is visible for only ∼1 s per day. Assuming that the optical light behaves in a similar manner, long exposures of the field would be relatively insensitive due to the accumulation of sky photons. A much better way of detecting optical emission from J1819−1458 would then be to observe with a high-speed optical camera simultaneously with radio observations, and co-add only those optical frames coincident with the dispersion-corrected radio bursts. We present the results of such a search, using simultaneous ULTRACAM and Lovell Telescope observations. We find no evidence for optical bursts in J1819−1458 at magnitudes brighter than i′= 19.3 (5σ limit). This is nearly 3 mag fainter than the previous burst limit, which had no simultaneous radio observations.
    Monthly Notices of the Royal Astronomical Society 05/2011; 414(4):3627 - 3632. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-speed, three-colour photometry of the eclipsing cataclysmic variables CTCV 1300, CTCV 2354 and SDSS 1152. All three systems are below the observed "period gap" for cataclysmic variables. For each system we determine the system parameters by fitting a parameterised model to the observed eclipse light curve by chi-squared minimisation. We also present an updated analysis of all other eclipsing systems previously analysed by our group. New donor masses are generally between 1 and 2 sigma of those originally published, with the exception of SDSS 1502 and DV UMa. We note that the donor mass of SDSS 1501 has been revised upwards by 0.024Msun. This system was previously identified as having evolved passed the minimum orbital period for cataclysmic variables, but the new mass determination suggests otherwise. Our new analysis confirms that SDSS 1035 and SDSS 1433 have evolved past the period minimum for cataclysmic variables, corroborating our earlier studies. We find that the radii of donor stars are oversized when compared to theoretical models, by approximately 10 percent. We show that this can be explained by invoking either enhanced angular momentum loss, or by taking into account the effects of star spots. We are unable to favour one cause over the other, as we lack enough precise mass determinations for systems with orbital periods between 100 and 130 minutes, where evolutionary tracks begin to diverge significantly. We also find a strong tendency towards high white dwarf masses within our sample, and no evidence for any He-core white dwarfs. The dominance of high mass white dwarfs implies that erosion of the white dwarf during the nova outburst must be negligible, or that not all of the mass accreted is ejected during nova cycles, resulting in the white dwarf growing in mass. (Abridged)
    Monthly Notices of the Royal Astronomical Society 03/2011; 415. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rotating RAdio Transient (RRAT) J1819-1458 exhibits ~3 ms bursts in the radio every ~3 min, implying that it is visible for only ~1 per day. Assuming that the optical light behaves in a similar manner, long exposures of the field would be relatively insensitive due to the accumulation of sky photons. A much better way of detecting optical emission from J1819-1458 would then be to observe with a high-speed optical camera simultaneously with radio observations, and co-add only those optical frames coincident with the dispersion-corrected radio bursts. We present the results of such a search, using simultaneous ULTRACAM and Lovell Telescope observations. We find no evidence for optical bursts in J1819-1458 at magnitudes brighter than i'=19.3 (5-sigma limit). This is nearly 3 magnitudes fainter than the previous burst limit, which had no simultaneous radio observations.
    03/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-speed optical photometry of the anomalous X-ray pulsar 1E1048.1-5937 obtained with ULTRACAM on the 8.2-m Very Large Telescope in 2007 June. We detect 1E1048.1-5937 at a magnitude of i' = 25.3 +/- 0.2, consistent with the values found by Wang et al. and hence confirming their conclusion that the source was approximately 1mag brighter than in 2003-06 due to an on-going X-ray flare that started in 2007 March. The increased source brightness enabled us to detect optical pulsations with an identical period (6.458s) to the X-ray pulsations. The root-mean-square (rms) pulsed fraction in our data is 21 +/- 7 per cent, approximately the same as the 2-10keV X-ray rms pulsed fraction. The optical and X-ray pulse profiles show similar morphologies and appear to be approximately in phase with each other, the latter lagging the former by only 0.06 +/- 0.02 cycles. The optical pulsations in 1E1048.1-5937 are very similar in nature to those observed in 4U0142+61. The implications of our observations for models of anomalous X-ray pulsars are discussed.
    Monthly Notices of the Royal Astronomical Society 01/2009; 394(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACTULTRACAM is a portable, high-speed imaging photometer designed to study faint astronomical objects at high temporal resolutions. ULTRACAM employs two dichroic beamsplitters and three frame-transfer CCD cameras to provide three-colour optical imaging at frame rates of up to 500 Hz. The instrument has been mounted on both the 4.2-m William Herschel Telescope on La Palma and the 8.2-m Very Large Telescope in Chile, and has been used to study white dwarfs, brown dwarfs, pulsars, black hole/neutron star X-ray binaries, gamma-ray bursts, cataclysmic variables, eclipsing binary stars, extrasolar planets, flare stars, ultracompact binaries, active galactic nuclei, asteroseismology and occultations by Solar System objects (Titan, Pluto and Kuiper Belt objects). In this paper we describe the scientific motivation behind ULTRACAM, present an outline of its design and report on its measured performance.
    Monthly Notices of the Royal Astronomical Society 06/2007; 378(3):825 - 840. · 5.52 Impact Factor

Publication Stats

122 Citations
33.13 Total Impact Points

Institutions

  • 2011
    • University of Zielona Góra
      • Institute of Astronomy
      Zielona Góra, Lubusz, Poland
  • 2007–2011
    • The University of Sheffield
      • Department of Physics and Astronomy
      Sheffield, England, United Kingdom