Nathalie Jérôme

French National Institute for Agricultural Research, Lutetia Parisorum, Île-de-France, France

Are you Nathalie Jérôme?

Claim your profile

Publications (9)24.54 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sexually experienced male rats display penile erections when exposed to faeces from mammalian females in oestrus (Rampin et al., Behav Brain Res, 172:169, 2006), suggesting that specific odours indicate female receptiveness across species. However, it is unknown to what extent the sexual response observed results from an odorous conditioning acquired during sexual experience. We tested the behavioural response of male Brown Norway rats both when sexually naïve and experienced to four odours, including oestrous rat faeces and 6-methyl-5-hepten-2-one (methylheptenone; a molecule found in higher concentrations during oestrus in female rats, foxes and horses). Odour had a significant effect on the sexual response of the naïve rats, with oestrus faeces provoking significantly more erections than herb odour, and with methylheptenone and di-oestrus faeces being intermediate. This indicates that sexually naïve male rats have an unconditioned ability to detect oestrous mediated via odour. After gaining sexual experience, the response to methylheptenone, di- and oestrus faeces was significantly higher than that observed with herb odour. These results strongly suggest that methylheptenone is part of the odorous bouquet of oestrus and contributes to the olfactory determination of female receptiveness.
    Physiology & Behavior 07/2013; 120. DOI:10.1016/j.physbeh.2013.07.012 · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Methodology/Principal Findings Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized a
    PLoS ONE 10/2012; 7(10-10):e48491. DOI:10.1371/journal.pone.0048491 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Submitted
    PLoS ONE 07/2012; · 3.23 Impact Factor

  • PLoS ONE 01/2012; · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common set of odorous molecules may indicate female receptiveness across species, as male rats display sexual arousal when exposed to the odour of oestrous faeces from rats, vixens and mares. More than 900 different compounds were identified by GC-MS analyses performed on faeces samples from di-oestrous and oestrous females and from males of the three species. Five carboxylic acids were found in lower concentrations in faeces from all oestrous females. We subjected 12 sexually trained male rats to a 30 min exposure to different dilutions of a mixture of these five molecules in the same proportions as found in female oestrous faeces. The behavioural responses of the rats were compared to those displayed when exposed to water (negative control) and faeces from oestrous female rats (positive control). Frequency of penile erections were found to be significantly dependent on mixture dilution, with two intermediate dilutions eliciting frequencies of penile erections that did not differ from those obtained during exposure to oestrous female rat faeces. Higher and lower dilutions did not elicit more penile erections than observed with water. These results support our hypothesis that a small set of odorous molecules may indicate sexual receptiveness in mammalian females.
    Behavioural brain research 08/2011; 225(2):584-9. DOI:10.1016/j.bbr.2011.08.026 · 3.03 Impact Factor
  • Olivier Rampin · Nathalie Jérôme · Christine Briant · Franck Boué · Yves Maurin ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult male rats were exposed to faeces odours of three animal species (rat, fox and horse). They displayed erections in the presence of faeces from oestrous females (whatever the species). In addition, fox faeces (whatever the gender or hormonal status) elicited an expected freezing reaction. It is suggested that oestrous female faeces of these three species share common odorants which depend on the hormonal status and characterize female receptivity.
    Behavioural Brain Research 10/2006; 172(1):169-72. DOI:10.1016/j.bbr.2006.04.005 · 3.03 Impact Factor
  • Olivier Rampin · Régine Monnerie · Nathalie Jérôme · Kevin McKenna · Yves Maurin ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The lumbosacral spinal network controlling penile erection is activated by information from peripheral and supraspinal origins. We tested the hypothesis that glutamate, released by sensory afferents from the genitals, activates this proerectile network. In anesthetized intact and T8 spinalized (i.e., freed from supraspinal inhibition) male rats, the parameters of electrical stimulation of the dorsal penile nerve (DPN) that elicited intracavernous pressure (ICP) rises were determined. In T8 spinalized rats, DPN stimulations were applied in the presence of d(-)-2-amino-5-phosphonopentanoic acid (d-AP5), a competitive NMDA receptor antagonist, or of 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulphonamide (NBQX), an AMPA-kainate receptor antagonist, injected intrathecally at the lumbosacral level. Both antagonists, alone or in combination, dose dependently decreased the ICP rise and increased its latency. In conscious rats, reflexive erections were depressed by d-AP5 and NBQX, as revealed by an increased latency of the first erection and by decreases of the number of rats displaying erections, of the number of erection clusters and of the number of erections per cluster. In anesthetized ats, the combined administration of the glutamatergic agonists NMDA and AMPA elicited ICP rises in the absence of DPN stimulation. In contrast, both agonists moderately decreased the ICP rise elicited by DPN stimulation but did not affect its latency. These results support our hypothesis that glutamate, released on stimulation of the genitals and acting at AMPA and NMDA receptors, is a potent reactivator of the spinal proerectile network.
    AJP Regulatory Integrative and Comparative Physiology 05/2004; 286(4):R710-8. DOI:10.1152/ajpregu.00645.2003 · 3.11 Impact Factor
  • Olivier Rampin · Nathalie Jérôme · Charles Suaudeau ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopaminergic pathways play a key role in the central control of sexual behavior. Stimulation of central dopaminergic receptors elicits penile erection in a variety of species and has been proposed as a treatment option for erectile dysfunction in humans. The present study investigated the proerectile effects of apomorphine in mice. In this species, subcutaneous injection of apomorphine (range: 0.11-110 microg/kg sc) elicited three different behavioral responses: erection, erection-like responses and genital grooming. Proerectile effects of apomorphine were dose-dependent. More than 50% of mice displayed erections after administration of 1.1-11 microg/kg of apomorphine sc. Proerectile effects of apomorphine were blocked by haloperidol, a central D2 antagonist, but not by domperidone, a peripherally active dopaminergic antagonist. We conclude that apomorphine elicits erection in mice. This effect is dose-dependent and due to activation of central D2 dopaminergic receptors. The mouse model may be useful for pharmacological approaches designed to provide a better understanding of the central mechanisms of penile erection and sexual behavior.
    Life Sciences 05/2003; 72(21):2329-36. DOI:10.1016/S0024-3205(03)00122-X · 2.70 Impact Factor