Min-Jong Kang

Yale-New Haven Hospital, New Haven, Connecticut, United States

Are you Min-Jong Kang?

Claim your profile

Publications (24)140.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Cytokine receptors can be markers defining different T cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor alpha (IL-6Rα) with asthma was reported, suggesting their involvement in asthma. Objectives: To determine whether and how IL-6Rα defines a distinct effector memory (EM) CD8+ T cell population in health and disease. Methods: EM CD8+ T cells expressing IL-6Rα (IL-6Rαhigh) were identified in human peripheral blood and analyzed for function, gene and transcription factor expression. The relationship of these cells with asthma was determined using blood and sputum. Measurements and Main results: A unique population of IL-6Rαhigh EM CD8+ T cells was found in peripheral blood. These cells that potently proliferated, survived, and produced high levels of the Th2-type cytokines IL-5 and IL-13 had increased levels of GATA3 and decreased levels of T-bet and Blimp-1 in comparison to other EM CD8+ T cells. In fact, GATA3 was required for IL-6Rα expression. Asthmatic patients had an increased frequency of IL-6Rαhigh EM CD8+ T cells in peripheral blood compared to healthy controls. Also, IL-6Rαhigh EM CD8+ T cells exclusively produced IL-5 and IL-13 in response to asthma-associated respiratory syncytial virus and bacterial superantigens. Conclusions: Human IL-6Rαhigh EM CD8+ T cells is a unique cell subset that may serve as a reservoir for effector CD8+ T cells, particularly the ones producing Th2-type cytokines, and expand in asthma.
    American Journal of Respiratory and Critical Care Medicine 11/2014; · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Cytokine receptors can be markers defining different T cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor alpha (IL-6Rα) with asthma was reported, suggesting their involvement in asthma. Objectives: To determine whether and how IL-6Rα defines a distinct effector memory (EM) CD8+ T cell population in health and disease. Methods: EM CD8+ T cells expressing IL-6Rα (IL-6Rαhigh) were identified in human peripheral blood and analyzed for function, gene and transcription factor expression. The relationship of these cells with asthma was determined using blood and sputum. Measurements and Main results: A unique population of IL-6Rαhigh EM CD8+ T cells was found in peripheral blood. These cells that potently proliferated, survived, and produced high levels of the Th2-type cytokines IL-5 and IL-13 had increased levels of GATA3 and decreased levels of T-bet and Blimp-1 in comparison to other EM CD8+ T cells. In fact, GATA3 was required for IL-6Rα expression. Asthmatic patients had an increased frequency of IL-6Rαhigh EM CD8+ T cells in peripheral blood compared to healthy controls. Also, IL-6Rαhigh EM CD8+ T cells exclusively produced IL-5 and IL-13 in response to asthma-associated respiratory syncytial virus and bacterial superantigens. Conclusions: Human IL-6Rαhigh EM CD8+ T cells is a unique cell subset that may serve as a reservoir for effector CD8+ T cells, particularly the ones producing Th2-type cytokines, and expand in asthma.
    American Journal of Respiratory and Critical Care Medicine 11/2014; · 11.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis is a systemic inflammatory response to infection and a major cause of death worldwide. As specific therapies to treat sepsis are limited, and underlying pathogenesis is unclear, current medical care remains purely supportive. Targeted therapies to treat sepsis need to be developed. While an important mediator of sepsis is thought to be mitochondrial dysfunction, the underlying molecular mechanism is unclear. Modulation of mitochondrial processes may be an effective therapeutic strategy in sepsis. Here, we investigated the role of the kinase MKK3 in regulation of mitochondrial function in sepsis. Using clinically relevant animal models, we examined mitochondrial function in primary mouse lung endothelial cells exposed to LPS. MKK3 deficiency reduces lethality of sepsis in mice and by lowering levels of lung and mitochondrial injury and reactive oxygen species. Furthermore, MKK3 deficiency appeared to simultaneously increase mitochondrial biogenesis and mitophagy through the actions of Sirt1, Pink1 and Parkin. This led to a more robust mitochondrial network, which we propose provides protection against sepsis. We also detected higher MKK3 activation in isolated peripheral blood mononuclear cells from septic patients compared to non-septic controls. Our findings demonstrate a critical role for mitochondria in the pathogenesis of sepsis that involves a previously unrecognized function of MKK3 in mitochondrial quality control. This mitochondrial pathway may help reveal new diagnostic markers and therapeutic targets against sepsis.
    AJP Lung Cellular and Molecular Physiology 01/2014; · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-β1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.
    The Journal of Immunology 08/2013; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Although previous literature suggests that IL-13, a T helper type 2 cell effector cytokine, might be involved in the pathogenesis of pulmonary hypertension (PH), direct proof is lacking. Further, a potential mechanism underlying IL-13-induced PH has never been explored. Objective: This study's goal was to investigate the role and mechanism of IL-13 in the pathogenesis of PH. Methods and Results: Lung-specific IL-13 overexpressing transgenic (Tg) mice were examined for hemodynamic changes and pulmonary vascular remodeling. IL-13 Tg mice spontaneously developed PH phenotype by the age of 2 months with increased the expression and activity of arginase 2 (Arg2). The role of Arg2 in the development of IL-13-stimulated PH was further investigated using Arg2 and IL-13Rα2 null mutant mice and siRNA silencing approach in vivo and in vitro, respectively. IL-13-stimulated medial thickening of pulmonary arteries and RV systolic pressure were significantly decreased in the IL-13 Tg mice with Arg2 null mutation. On the other hand, the production of NO was further increased in the lungs of these mice. In our in vitro evaluations, the recombinant IL-13 treatment significantly enhanced the proliferation of human pulmonary artery smooth muscle cells (hpaSMC) in an Arg2 and dependent manner. The IL-13-stimulated cellular proliferation and the expression of Arg2 in hpaSMC were markedly decreased with IL-13Rα2 siRNA silencing. Conclusions: Our studies demonstrate that IL-13 contributes to the development of PH via an IL-13Rα2-Arg2 dependent pathway. The intervention of this pathway could be a potential therapeutic target in pulmonary arterial hypertension.
    AJP Lung Cellular and Molecular Physiology 11/2012; · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulated amphiregulin (AR) expression and EGFR activation have been described in animal models of pulmonary fibrosis and in patients with idiopathic pulmonary fibrosis (IPF). However, the exact role of AR in the pathogenesis of pulmonary fibrosis has not been clearly defined. Here, we show that a potent pro-fibrogenic cytokine TGF-β1 significantly induced the expression of AR in lung fibroblasts in vitro and in murine lungs in vivo. AR stimulated NIH3T3 fibroblast cell proliferation in a dose-dependent manner. Silencing of AR expression by siRNA or chemical inhibition of EGFR signaling, utilizing AG1478 and Gefitinib, significantly reduced the ability of TGF-β1 to stimulate fibroblast proliferation and expression of α-smooth muscle actin, collagen, and other extracellular matrix (ECM)-associated genes. TGF-β1-stimulated activation of Akt, Erk, and Smad signaling was also significantly inhibited by these interventions. Consistent with these in vitro findings, AR expression was impressively increased in the lungs of TGF-β1 transgenic mice, and either siRNA silencing of AR or chemical inhibition of EGFR signaling significantly reduced TGF-β1-stimulated collagen accumulation in the lung. These studies showed a novel regulatory role for AR in the pathogenesis of TGF-β1-induced pulmonary fibrosis. In addition, these studies suggest that AR, or AR-activated EGFR signaling, is a potential therapeutic target for IPF associated with TGF-β1 activation.
    Journal of Biological Chemistry 10/2012; · 4.65 Impact Factor
  • American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California; 05/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, alveolar destruction, and airway and vascular remodeling. However, the mechanisms that lead to these diverse alterations have not been defined. We hypothesized that IL-18 plays a central role in the pathogenesis of these lesions. We generated and characterized lung-specific, inducible IL-18 transgenic mice. Here we demonstrate that the expression of IL-18 in the mature murine lung induces inflammation that is associated with the accumulation of CD4(+), CD8(+), CD19(+), and NK1.1(+) cells; emphysema; mucus metaplasia; airway fibrosis; vascular remodeling; and right ventricle cardiac hypertrophy. We also demonstrate that IL-18 induces type 1, type 2, and type 17 cytokines with IFN-γ-inhibiting macrophage, lymphocyte, and eosinophil accumulation while stimulating alveolar destruction and genes associated with cell cytotoxicity and IL-13 and IL-17A inducing mucus metaplasia, airway fibrosis, and vascular remodeling. We also highlight interactions between these responses with IL-18 inducing IL-13 via an IL-17A-dependent mechanism and the type 1 and type17/type 2 responses counterregulating each another. These studies define the spectrum of inflammatory, parenchymal, airway, and vascular alterations that are induced by pulmonary IL-18; highlight the similarities between these responses and the lesions in COPD; and define the selective roles that type 1, type 2, and type 17 responses play in the generation of IL-18-induced pathologies.
    American Journal of Respiratory and Critical Care Medicine 03/2012; 185(11):1205-17. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exaggerated expression of chitinase-like protein YKL-40, the human homologue of breast regression protein-39 (BRP-39), was reported in a number of diseases, including chronic obstructive pulmonary disease (COPD). However, the in vivo roles of YKL-40 in normal physiology or in the pathogenesis of specific diseases such as COPD remain poorly understood. We hypothesized that BRP-39/YKL-40 plays an important role in the pathogenesis of cigarette smoke (CS)-induced emphysema. To test this hypothesis, 10-week-old wild-type and BRP-39 null mutant mice (BRP-39(-/-)) were exposed to room air (RA) and CS for up to 10 months. The expression of BRP-39 was significantly induced in macrophages, airway epithelial cells, and alveolar Type II cells in the lungs of CS-exposed mice compared with RA-exposed mice, at least in part via an IL-18 signaling-dependent pathway. The null mutation of BRP-39 significantly reduced CS-induced bronchoalveolar lavage and tissue inflammation. However, CS-induced epithelial cell apoptosis and alveolar destruction were further enhanced in the absence of BRP-39. Consistent with these findings in mice, the tissue expression of YKL-40 was significantly increased in the lungs of current smokers compared with the lungs of ex-smokers or nonsmokers. In addition, serum concentrations of YKL-40 were significantly higher in smokers with COPD than in nonsmokers or smokers without COPD. These studies demonstrate a novel regulatory role of BRP-39/YKL-40 in CS-induced inflammation and emphysematous destruction. These studies also underscore that maintaining physiologic concentrations of YKL-40 in the lung is therapeutically important in preventing excessive inflammatory responses or emphysematous alveolar destruction.
    American Journal of Respiratory Cell and Molecular Biology 06/2011; 44(6):777-86. · 4.15 Impact Factor
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) regulates vascular, inflammatory, remodeling, and cell death responses. It plays a critical role in normal pulmonary physiology, and VEGF excess and deficiency have been implicated in the pathogenesis of asthma and chronic obstructive pulmonary disease, respectively. Although viruses are an important cause of chronic obstructive pulmonary disease exacerbations and innate responses play an important role in these exacerbations, the effects of antiviral responses on VEGF homeostasis have not been evaluated. We hypothesized that antiviral innate immunity regulates VEGF tissue responses. We compared the effects of transgenic VEGF(165) in mice treated with viral pathogen-associated molecular pattern polyinosinic:polycytidylic acid [poly(I:C)], mice treated with live virus, and control mice. Transgenic VEGF stimulated angiogenesis, edema, inflammation, and mucin accumulation. Each of these was abrogated by poly(I:C). These inhibitory effects were dose dependent, noted when poly(I:C) was administered before and after transgene activation, and mediated by a Toll-like receptor-3-independent and RIG-like helicase (RLH)- and type I IFN receptor-dependent pathway. VEGF stimulated the expression of VEGF receptor-1 and poly(I:C) inhibited this stimulation. Poly(I:C) also inhibited the ability of VEGF to activate extracellular signal-regulated kinase-1, Akt, focal adhesion kinase, and endothelial nitric oxide synthase, and aeroallergen-induced adaptive helper T-cell type 2 inflammation. Influenza and respiratory syncytial virus also inhibited VEGF-induced angiogenesis. These studies demonstrate that poly(I:C) and respiratory viruses inhibit VEGF-induced tissue responses and adaptive helper T-cell type 2 inflammation and highlight the importance of a RLH- and type I IFN receptor-dependent pathway(s) in these regulatory events. They define a novel link between VEGF and antiviral and RLH innate immune responses and a novel pathway that regulates pulmonary VEGF activity.
    American Journal of Respiratory and Critical Care Medicine 01/2011; 183(10):1322-35. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lung is one of the commonest sites of exposure to environmental allergen or pathogen, so the expression of a variety of cytokines in the lung is dynamically regulated by inflammatory or structural cells in the lung. In the last decades, characterization of the local lung cytokine milieu in allergic or injury models has identified a collective role of certain cytokines, such as type 1 or type 2 cytokines, driving polarized inflammatory and tissue phenotypes. With the development of transgenic mouse modelling systems, the effector function of individual cytokine and the pathophysiological consequences of cytokine polarization in the lung have been effectively evaluated. Here, we present an overview of the transgenic systems currently used to assess the biological function of cytokine or other mediators in the lung. We discuss the inflammatory and tissue phenotypes detected in the lungs of transgenic mice over-expressing representative T helper type 1 (interferon-γ, interleukin-12), T helper type 2 (interleukins -4, -5, -9, -10 and -13), and T helper type 17 cytokines. The effects of genetic modification of cytokine receptors or transcriptional factors such as GATA-3 and T-bet in pulmonary inflammation and remodelling tissue responses are also discussed because these transcription factors are regarded as essential regulators of cytokine polarization. Finally, we discuss the limitations and future application of transgenic approaches in the studies of human lung diseases characterized by cytokine polarization.
    Immunology 01/2011; 132(1):9-17. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolonged exposure to 100% O(2) causes hyperoxic acute lung injury (HALI), characterized by alveolar epithelial cell injury and death. We previously demonstrated that the murine chitinase-like protein, breast regression protein (BRP)-39 and its human homolog, YKL-40, inhibit cellular apoptosis. However, the regulation and roles of these molecules in hyperoxia have not been addressed. We hypothesized that BRP-39 and YKL-40 (also called chitinase-3-like 1) play important roles in the pathogenesis of HALI. We characterized the regulation of BRP-39 during HALI and the responses induced by hyperoxia in wild-type mice, BRP-39-null (-/-) mice, and BRP-39(-/-) mice in which YKL-40 was overexpressed in respiratory epithelium. We also compared the levels of tracheal aspirate YKL-40 in premature newborns with respiratory failure. These studies demonstrate that hyperoxia inhibits BRP-39 in vivo in the murine lung and in vitro in epithelial cells. They also demonstrate that BRP-39(-/-) mice have exaggerated permeability, protein leak, oxidation, inflammatory, chemokine, and epithelial apoptosis responses, and experience premature death in 100% O(2). Lastly, they demonstrate that YKL-40 ameliorates HALI, prolongs survival in 100% O(2), and rescues the exaggerated injury response in BRP-39(-/-) animals. In accord with these findings, the levels of tracheal aspirate YKL-40 were lower in premature infants treated with hyperoxia for respiratory failure who subsequently experienced bronchopulmonary dysplasia or death compared with those that did not experience these complications. These studies demonstrate that hyperoxia inhibits BRP-39/YKL-40, and that BRP-39 and YKL-40 are critical regulators of oxidant injury, inflammation, and epithelial apoptosis in the murine and human lung.
    American Journal of Respiratory and Critical Care Medicine 10/2010; 182(7):918-28. · 11.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that Th2 cytokine genes on mouse chromosome 11 are coordinately regulated by the Th2 locus control region (LCR). To examine the in vivo function of Th2 LCR, we generated CD4-specific Th2 LCR-deficient (cLCR KO) mice using Cre-LoxP recombination. The number of CD4 T cells in the cLCR KO mouse was comparable to that in wild-type mice. The expression of Th2 cytokines was dramatically reduced in in vitro-stimulated naïve CD4 T cells. Deletion of the LCR led to a loss of general histone H3 acetylation and histone H3-K4 methylation, and demethylation of DNA in the Th2 cytokine locus. Upon ovalbumin challenge in the mouse model of allergic asthma, cLCR KO mice exhibited marked reduction in the recruitment of eosinophils and lymphocytes in the bronchoalveolar lavage fluid, serum IgE level, lung airway inflammation, mucus production in the airway walls, and airway hyperresponsiveness. These results directly demonstrate that the Th2 LCR is critically important in the regulation of Th2 cytokine genes, in chromatin remodeling of the Th2 cytokine locus, and in the pathogenesis of allergic asthma.
    Proceedings of the National Academy of Sciences 06/2010; 107(23):10614-9. · 9.81 Impact Factor
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010

Publication Stats

371 Citations
140.78 Total Impact Points

Institutions

  • 2011–2013
    • Yale-New Haven Hospital
      • Department of Pathology
      New Haven, Connecticut, United States
  • 2006–2012
    • Yale University
      • • Department of Internal Medicine
      • • Section of Pulmonary and Critical Care Medicine
      New Haven, CT, United States
  • 2010
    • Yonsei University Hospital
      Sŏul, Seoul, South Korea