Mickael Le Béchec

Ecole normale supérieure de Lyon, Lyons, Rhône-Alpes, France

Are you Mickael Le Béchec?

Claim your profile

Publications (7)18.26 Total impact

  • Source
  • [show abstract] [hide abstract]
    ABSTRACT: Peptide ligand-induced dimerization of the extracellular region of the epidermal growth factor receptor (sEGFR) is central to the signal transduction of many cellular processes. A small molecule microarray screen has been developed to search for non-peptide compounds able to bind to sEGFR. We describe the discovery of nitro-benzoxadiazole (NBD) compounds that enhance tyrosine phosphorylation of EGFR and thereby trigger downstream signaling pathways and other receptor tyrosine kinases in cancer cells. The protein phosphorylation profile in cells exposed to NBD compounds is to some extent reminiscent of the profile induced by the cognate ligand. Experimental studies indicate that the small compounds bind to the dimerization domain of sEGFR, and generate stable dimers providing allosteric activation of the receptor. Moreover, receptor phosphorylation is associated with inhibition of PTP-1B phosphatase. Our data offer a promising paradigm for investigating new aspects of signal transduction mediated by EGFR in cancer cells exposed to electrophilic NBD compounds.
    Scientific Reports 01/2014; 4:3977. · 2.93 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Engineering of glycosidases with efficient transglycosidases activity is an alternative to glycosyltransferases or glycosynthases for the synthesis of oligosaccharides and glycoconjugates. However, the engineering of transglycosidases by directed evolution methodologies is hampered by the lack of efficient screening systems for sugar-transfer activity. We report here the development of digital imaging-based high-throughput screening methodology for the directed evolution of glycosidases into transgalactosidases. Using this methodology, we detected transglycosidase mutants in intact Escherichia coli cells by digital imaging monitoring of the activation of non- or low-hydrolytic mutants by an acceptor substrate. We screened several libraries of mutants of beta-glycosidase from Thermus thermophilus using this methodology and found variants with up to a 70-fold overall increase in the transglycosidase/hydrolysis activity ratio. Using natural disaccharide acceptors, these transglycosidase mutants were able to synthesise trisaccharides, as a mixture of two regioisomers, with up to 76% yield.
    Protein Engineering Design and Selection 12/2008; 22(1):37-44. · 2.59 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Orcinol O-methyltransferase (OOMT) 1 and 2 catalyze the last two steps of the biosynthetic pathway leading to the phenolic methyl ether 3,5-dimethoxytoluene (DMT), the major scent compound of many rose (Rosa x hybrida) varieties. Modern roses are descended from both European and Chinese species, the latter being producers of phenolic methyl ethers but not the former. Here we investigated why phenolic methyl ether production occurs in some but not all rose varieties. In DMT-producing varieties, OOMTs were shown to be localized specifically in the petal, predominantly in the adaxial epidermal cells. In these cells, OOMTs become increasingly associated with membranes during petal development, suggesting that the scent biosynthesis pathway catalyzed by these enzymes may be directly linked to the cells' secretory machinery. OOMT gene sequences were detected in two non-DMT-producing rose species of European origin, but no mRNA transcripts were detected, and these varieties lacked both OOMT protein and enzyme activity. These data indicate that up-regulation of OOMT gene expression may have been a critical step in the evolution of scent production in roses.
    Plant physiology 02/2006; 140(1):18-29. · 6.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To study molecules secreted from cultured plant cells that promote development, maize microspores were transferred into culture and the conditioned media were collected over time and analysed. Electrophoresis indicated that both non-glycosylated and glycosylated proteins including arabinogalactan proteins (AGPs) appeared in the medium and their concentration increased during the time of culture. The development of embryos was correlated with the presence of specific extracellular proteins, using an experimental system based on a tunicamycin inhibition test. In addition, a precise protein analysis was conducted using MALDI-TOF and ESI-MS-MS techniques. These approaches have allowed the identification of 5 other types of proteins: a cell wall invertase, two thaumatin isoforms, one 1-3 beta-glucanase and two chitinase isoforms. Altogether these experiments and results open ways for research aimed at understanding which molecules stimulate embryo formation. Moreover, AGPs may be used to stimulate the development of microspores (pollen embryogenesis) prepared from non-responsive genotypes.
    European Journal of Cell Biology 08/2004; 83(5):205-12. · 3.21 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Three silica-immobilized organic photocatalysts, based on rose bengal (RB), antraquinone-2-carboxylic acid (ANT-COOH) and a new cyanoanthracene derivative (DBTP-COOH), were prepared and characterized. Their efficiency for the photooxidation of α-terpinene was compared to that of their soluble counterparts. In solution, the three sensitizers showed high quantum yield of singlet oxygen production. Significant autooxidation to p-cymene occurred in the absence of catalyst while the mechanism of the sensitized reaction strongly depended on sensitizer structure. With DBTP and RB materials, ascaridole was rapidly produced by singlet oxygen addition. In contrast, ANT-based sensitizers favored photodehydrogenation to p-cymene through an electron-transfer step inducing a radical chain reaction, followed by further p-cymene oxidation upon prolonged irradiation. The highest efficiency and selectivity were obtained for photooxygenation with DBTP-based materials, and for photodehydrogenation with ANT-based materials, these properties make them attractive for future applications as immobilized photocatalyst in solar synthesis, waste treatment, and microflow reactors.
    Journal of Catalysis. 303:164–174.
  • [show abstract] [hide abstract]
    ABSTRACT: This study describes a method derived from ISO/TC 206/SC specifications to assess the bactericidal activity against a bacterial strain, Pseudomonas fluorescens, of various photocatalytic fabrics, under UVA and filtered visible light. The experimental method allowed the accurate quantification of bacteria survival on photoactive surfaces and films under UVA and UV-free visible irradiation.Cotton fabrics coated with TiO2, anthraquinone or anthraquinone-sensitized TiO2 display a significant bactericidal efficiency. TiO2-coated fabrics are very efficient against P. fluorescens after 4 h UVA irradiation (bacteria survival below the detection limit). Under UVA-free visible light, anthraquinone-sensitized TiO2 coated fabrics induced a significant bactericidal activity after 2 h irradiation, while anthraquinone alone-coated fabrics were not as efficient and TiO2 coated fabrics were almost inefficient. These results show that although exhibiting a weak n–π* band in the 350–420 nm range, anthraquinone is a good candidate as an efficient visible light photosensitizer. A synergy effect between anthraquinone and TiO2 was demonstrated. A possible reaction mechanism, involving a synergy effect for singlet oxygen formation with anthraquinone-sensitized TiO2 is proposed to account for these results.
    Catalysis Today 209:134–139. · 2.98 Impact Factor