Michaela L Speirs

University of Florida, Gainesville, FL, United States

Are you Michaela L Speirs?

Claim your profile

Publications (4)8.03 Total impact

  • Source
    African Journal of Ecology 01/2009; 48(2). · 0.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying factors that influence animal density is a fundamental goal in ecology that has taken on new importance with the need to develop informed management plans. This is particularly the case for primates as the tropical forest that supports many species is being rapidly converted. We use a system of forest fragments adjacent to Kibale National Park, Uganda, to examine if food availability and parasite infections have synergistic affects on red colobus (Piliocolobus tephrosceles) abundance. Given that the size of primate populations can often respond slowly to environmental changes, we also examined how these factors influenced cortisol levels. To meet these objectives, we monitored gastrointestinal parasites, evaluated fecal cortisol levels, and determined changes in food availability by conducting complete tree inventories in eight fragments in 2000 and 2003. Red colobus populations declined by an average of 21% among the fragments; however, population change ranged from a 25% increase to a 57% decline. The cumulative basal area of food trees declined by an average of 29.5%; however, forest change was highly variable (a 2% gain to a 71% decline). We found that nematode prevalence averaged 58% among fragments (range 29-83%). The change in colobus population size was correlated both with food availability and a number of indices of parasite infections. A path analysis suggests that change in food availability has a strong direct effect on population size, but it also has an indirect effect via parasite infections.
    American Journal of Physical Anthropology 01/2007; 131(4):525-34. · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans are responsible for massive changes to primate habitats, and one unanticipated consequence of these alterations may be changes in host-parasite interactions. Edges are a ubiquitous aspect of human disturbance to forest landscapes. Here we examine how changes associated with the creation of edges in Kibale National Park, Uganda, alter the parasite community that is supported by two species of African colobines: the endangered red colobus (Piliocolobus tephrosceles) and the black-and-white colobus (Colobus guereza). An analysis of 822 fecal samples from edge and forest interior groups revealed no difference in the richness of parasite communities (i.e., the number of parasite species recovered from the host's fecal sample). However, for both species the proportion of individuals with multiple infections was greater in edge than forest interior groups. The prevalence of specific parasites also varied between edge and forest interior groups. Oesophagostomum sp., a potentially deleterious parasite, was 7.4 times more prevalent in red colobus on the edge than in those in the forest interior, and Entamoeba coli was four times more prevalent in red colobus on the edge than in animals from the forest interior. Environmental contamination with parasites (measured as parasite eggs/gm feces) by red colobus from the edge and forest interior differed in a similar fashion to prevalence for red colobus, but it did not differ for black-and-white colobus. For example, egg counts of Oesophagostomum sp. were 10 times higher in red colobus from the edge than in those from the interior. The less severe infections in the black-and-white colobus relative to the red colobus may reflect the fact that black-and-white colobus raid agricultural crops while red colobus do not. This nutritional gain may facilitate a more effective immune response to parasites by the black-and-white colobus. The fact that animals on the edge are likely not nutritionally stressed raises an intriguing question as to what facilitates the elevated infections in edge animals. We speculate that interactions with humans may be linked to the observed patterns of infections, and hence that understanding the ecology of infectious diseases in nonhuman primates is of paramount importance for conservation and potentially for human-health planning.
    American Journal of Primatology 05/2006; 68(4):397-409. · 2.46 Impact Factor
  • Source
    Colin A Chapman, Thomas R Gillespie, Michaela L Speirs
    [Show abstract] [Hide abstract]
    ABSTRACT: Factors that influence proximity and the number and duration of contacts among individuals can influence parasite transmission among hosts, and thus parasite prevalence and species richness are expected to increase with increasing host density. To examine this prediction we took advantage of a unique situation. Following the clearing of a forest fragment that supported red colobus (Piliocolobus tephrosceles) and black-and-white colobus (Colobus guereza), the animals moved into a neighboring fragment that we had been monitoring for a number of years and for which we had described the primate parasite community. After the animals immigrated into the fragment, the colobus populations more than doubled and colobus density became almost twice that found in Kibale National Park, Uganda. Despite this increase in host density, the richness of the parasite community did not increase. However, in both colobus species the prevalence of Trichuris sp., the only commonly occurring gastrointestinal parasite, increased. Over the next 5 years the prevalence and intensity of infection of Trichuris sp. in red colobus declined and their population numbers slowly increased. In contrast, the prevalence and intensity of infection of Trichuris sp. increased in black-and-white colobus and remained high following the immigration, and their population size declined. While Trichuris sp. infections are typically asymptomatic, we consider it a possibility that they contributed to the decline of the black-and-white colobus, and that the red colobus may be serving as a reservoir for Trichuris, thereby increasing the infection risk for black-and-white colobus.
    American Journal of Primatology 11/2005; 67(2):259-66. · 2.46 Impact Factor

Publication Stats

122 Citations
8.03 Total Impact Points

Institutions

  • 2009
    • University of Florida
      • College of Public Health and Health Professions
      Gainesville, FL, United States
  • 2005
    • McGill University
      • Department of Anthropology
      Montréal, Quebec, Canada