Michael R Burgess

University of California, San Francisco, San Francisco, California, United States

Are you Michael R Burgess?

Claim your profile

Publications (6)48.58 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oncogenic NRAS mutations are highly prevalent in acute myeloid leukemia (AML). Genetic analysis supports the hypothesis that NRAS mutations cooperate with antecedent molecular lesions in leukemogenesis, but have limited independent prognostic significance. Using shRNA-mediated knockdown in human cell lines and primary mouse leukemias, we show that AML cells with NRAS/Nras mutations are dependent on continued oncogene expression in vitro and in vivo. Using the Mx1-Cre transgene to inactivate a conditional mutant Nras allele, we analyzed hematopoiesis and hematopoietic stem and progenitor cells (HSPC) under normal and stressed conditions and found that HSPCs lacking Nras expression are functionally equivalent to normal HSPCs in the adult mouse. Treating recipient mice transplanted with primary Nras(G12D) AMLs with two potent allosteric MEK inhibitors (PD0325901 or trametinib/GSK1120212) significantly prolonged survival and reduced proliferation but did not induce apoptosis, promote differentiation, or drive clonal evolution. The PI3K inhibitor GDC-0941 was ineffective as a single agent, and did not augment the activity of PD0325901. All mice ultimately succumbed from progressive leukemia. Together, these data validate oncogenic N-Ras signaling as a therapeutic target in AML and support testing combination regimens that include MEK inhibitors.
    Blood 10/2014; 124(26). DOI:10.1182/blood-2014-05-574582 · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MAGUK Inverted 2 (MAGI-2) is a PTEN-interacting scaffold protein implicated in cancer on the basis of rare, recurrent genomic translocations and deletions in various tumors. In the renal glomerulus, MAGI-2 is exclusively expressed in podocytes, specialized cells forming part of the glomerular filter, where it interacts with the slit diaphragm protein nephrin. To further explore MAGI-2 function, we generated Magi-2-KO mice through homologous recombination by targeting an exon common to all three alternative splice variants. Magi-2 null mice presented with progressive proteinuria as early as 2 wk postnatally, which coincided with loss of nephrin expression in the glomeruli. Magi-2-null kidneys revealed diffuse podocyte foot process effacement and focal podocyte hypertrophy by 3 wk of age, as well as progressive podocyte loss. By 5.5 wk, coinciding with a near-complete loss of podocytes, Magi-2-null mice developed diffuse glomerular extracapillary epithelial cell proliferations, and died of renal failure by 3 mo of age. As confirmed by immunohistochemical analysis, the proliferative cell populations in glomerular lesions were exclusively composed of activated parietal epithelial cells (PECs). Our results reveal that MAGI-2 is required for the integrity of the kidney filter and podocyte survival. Moreover, we demonstrate that PECs can be activated to form glomerular lesions resembling a noninflammatory glomerulopathy with extensive extracapillary proliferation, sometimes resembling crescents, following rapid and severe podocyte loss.
    Proceedings of the National Academy of Sciences 09/2014; 111(41). DOI:10.1073/pnas.1417297111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncogenic K-Ras proteins, such as K-Ras(G12D), accumulate in the active, guanosine triphosphate (GTP)-bound conformation and stimulate signaling through effector kinases. The presence of the K-Ras(G12D) oncoprotein at a similar abundance to that of endogenous wild-type K-Ras results in only minimal phosphorylation and activation of the canonical Raf-mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling cascades in primary hematopoietic cells, and these pathways remain dependent on growth factors for efficient activation. We showed that phospholipase C-γ (PLC-γ), PI3K, and their generated second messengers link activated cytokine receptors to Ras and ERK signaling in differentiated bone marrow cells and in a cell population enriched for leukemia stem cells. Cells expressing endogenous oncogenic K-Ras(G12D) remained dependent on the second messenger diacylglycerol for the efficient activation of Ras-ERK signaling. These data raise the unexpected possibility of therapeutically targeting proteins that function upstream of oncogenic Ras in cancer.
    Science Signaling 12/2013; 6(304):ra105. DOI:10.1126/scisignal.2004125 · 7.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The success of targeting kinases in cancer with small molecule inhibitors has been tempered by the emergence of drug-resistant kinase domain mutations. In patients with chronic myeloid leukemia treated with ABL inhibitors, BCR-ABL kinase domain mutations are the principal mechanism of relapse. Certain mutations are occasionally detected before treatment, suggesting increased fitness relative to wild-type p210 BCR-ABL. We evaluated the oncogenicity of eight kinase inhibitor-resistant BCR-ABL mutants and found a spectrum of potencies greater or less than p210. Although most fitness alterations correlate with changes in kinase activity, this is not the case with the T315I BCR-ABL mutation that confers clinical resistance to all currently approved ABL kinase inhibitors. Through global phosphoproteome analysis, we identified a unique phosphosubstrate signature associated with each drug-resistant allele, including a shift in phosphorylation of two tyrosines (Tyr253 and Tyr257) in the ATP binding loop (P-loop) of BCR-ABL when Thr315 is Ile or Ala. Mutational analysis of these tyrosines in the context of Thr315 mutations demonstrates that the identity of the gatekeeper residue impacts oncogenicity by altered P-loop phosphorylation. Therefore, mutations that confer clinical resistance to kinase inhibitors can substantially alter kinase function and confer novel biological properties that may impact disease progression.
    Proceedings of the National Academy of Sciences 01/2007; 103(51):19466-71. DOI:10.1073/pnas.0609239103 · 9.81 Impact Factor
  • Source
    Michael R Burgess, Charles L Sawyers
    [Show abstract] [Hide abstract]
    ABSTRACT: Imatinib (Gleevec/STI-571/CGP57148B, Novartis) is a small-molecule, tyrosine kinase inhibitor developed to target BCR-ABL, c-Kit, and PDGF-R. Through inhibition of these oncogenic kinases, imatinib is effective in the treatment of BCR-ABL-positive leukemia, gastrointestinal stromal tumor, and hypereosinophilic syndrome, respectively. However, clinical success of imatinib is hampered by acquired resistance that may occur through several mechanisms including kinase domain mutation, target amplification, and activation of alternate signaling pathways. Strategies to overcome resistance have included targeting BCR-ABL stability and downstream signaling pathways important for tumor growth. Additional work has shown that new BCR-ABL kinase inhibitors with increased potency or alternate conformation-binding properties can target imatinib resistance. This review focuses on the mechanisms of imatinib resistance and the strategies currently being developed to overcome clinical resistance.
    The Scientific World Journal 02/2006; 6:918-30. DOI:10.1100/tsw.2006.184 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural studies suggest that most point mutations in the BCR-ABL kinase domain cause resistance to the ABL kinase inhibitor imatinib by impairing the flexibility of the kinase domain, restricting its ability to adopt the inactive conformation required for optimal imatinib binding, rather than by directly interfering with drug contact residues. BMS-354825, currently in clinical development for imatinib-resistant chronic myelogenous leukemia, is a dual SRC/ABL kinase inhibitor that binds ABL in both the active and inactive conformation. To examine the potential role of conformational binding properties in drug resistance, we mapped the mutations in BCR-ABL capable of conferring resistance to BMS-354825. Through saturation mutagenesis, we identified 10 such BCR-ABL mutations, 8 of which occurred at drug contact residues. Some mutants were unique to BMS-354825, whereas others also conferred imatinib resistance. Remarkably, the identity of the amino acid substitution at either of two contact residues differentially affects sensitivity to imatinib or BMS-354825. The combination of imatinib plus BMS-354825 greatly reduced the recovery of drug-resistant clones. Our findings provide further rationale for considering kinase conformation in the design of kinase inhibitors against cancer targets.
    Proceedings of the National Academy of Sciences 04/2005; 102(9):3395-400. DOI:10.1073/pnas.0409770102 · 9.81 Impact Factor

Publication Stats

334 Citations
48.58 Total Impact Points


  • 2014
    • University of California, San Francisco
      • Department of Medicine
      San Francisco, California, United States
  • 2006
    • University of California, Los Angeles
      • Molecular Biology Institute
      Los Angeles, CA, United States